A statistical and physical mechanisms-based interference and noise model for array observations

A statistical noise model is developed from mathematical modeling of the physical mechanisms that generate noise in communication receivers employing antenna arrays. Such models have been lacking for cases where the antenna observations may be statistically dependent from antenna to antenna. The model is developed by generalizing an approach for single antenna cases suggested by Middleton (1967, 1974, 1976, 1977). The model derived here is applicable to a wide variety of physical situations. The focus is primarily on problems defined by Middleton to be Class A interference. The number of noise sources in a small region of space is assumed to be Poisson distributed, and the emission times are assumed to be uniformly distributed over a long time interval. Finally, an additive Gaussian background component is included to represent the thermal noise that is always present in real receivers.

[1]  K. Furutsu,et al.  On the Theory of Amplitude Distribution of Impulsive Random Noise , 1961 .

[2]  J. F. Diouris,et al.  Sensitivity analysis of the performance of a diversity receiver , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[3]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[4]  D. Middleton Statistical-Physical Models of Urban Radio-Noise Environments - Part I: Foundations , 1972 .

[5]  P. A. Delaney,et al.  Signal detection in multivariate class-A interference , 1995, IEEE Trans. Commun..

[6]  H. Vincent Poor,et al.  Performance of DS/SSMA Communications in Impulsive Channels - Part I: Linear Correlation Receivers , 1986, IEEE Transactions on Communications.

[7]  Brian M. Sadler,et al.  Parameter estimation for linear alpha-stable processes , 1998, IEEE Signal Processing Letters.

[8]  F. Haber,et al.  Modeling of Atmospheric Noise , 1972 .

[9]  David Middleton,et al.  A statistical theory of reverberation and similar first-order scattered fields-I: Waveforms and the general process , 1967, IEEE Trans. Inf. Theory.

[10]  Samuel M. Selby,et al.  CRC Handbook of tables for Mathematics , 1967 .

[11]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[12]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[13]  Rick S. Blum,et al.  On the Approximation of Correlated Non-Gaussian Noise Pdfs using Gaussian Mixture Models , 1999 .

[14]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[15]  Kenneth S Vastola Threshold detection in narrowband non-Gaussian noise , 1983 .

[16]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[17]  Lucy Joan Slater Confluent Hypergeometric Functions , 1960 .

[18]  Andreas M. Maras,et al.  Locally optimum Bayes detection in nonadditive first-order Markov noise , 1999, IEEE Trans. Commun..

[19]  Rick S. Blum,et al.  An adaptive spatial diversity receiver for non-Gaussian interference and noise , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[20]  Antonio. Garcia-Valdecasas,et al.  Two-Dimensional Imaging , 1996 .

[21]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[22]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[23]  David Middleton,et al.  Statistical-Physical Models of Man-Made Radio Noise, Part I. First-Order Probability Models of the Instantaneous Amplitude , 1974 .

[24]  Lester F. Eastwood,et al.  Approximate likelihood ratio detectors for linear processes , 1977, IEEE Trans. Inf. Theory.

[25]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[26]  Vijay K. Rohatgi,et al.  Robustness of statistical tests , 1989 .

[27]  David Middleton,et al.  A statistical theory of reverberation and similar first-order scattered fields-II: Moments, spectra and special distributions , 1967, IEEE Trans. Inf. Theory.

[28]  Theodore S. Rappaport,et al.  Measurements and simulation of radio frequency impulsive noise in hospitals and clinics , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[29]  Kenneth S. Vastola,et al.  Threshold Detection in Narrow-Band Non-Gaussian Noise , 1984, IEEE Trans. Commun..

[30]  David Middleton,et al.  Statistical-Physical Models of Electromagnetic Interference , 1977, IEEE Transactions on Electromagnetic Compatibility.

[31]  K. Shanmugan,et al.  Random Signals: Detection, Estimation and Data Analysis , 1988 .

[32]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.