Multiple Invariance ESPRIT for Nonuniform Linear Arrays: A Coupled Canonical Polyadic Decomposition Approach

The Canonical Polyadic Decomposition (CPD) of higher-order tensors has proven to be an important tool for array processing. CPD approaches have so far assumed regular array geometries such as uniform linear arrays. However, in the case of sparse arrays such as nonuniform linear arrays (NLAs), the CPD approach is not suitable anymore. Using the coupled CPD we propose in this paper a multiple invariance ESPRIT method for both one- and multi-dimensional NLA processing. We obtain a multiresolution ESPRIT method for sparse arrays with multiple baselines. The coupled CPD framework also yields a new uniqueness condition that is relaxed compared with the CPD approach. It also leads to an eigenvalue decomposition based algorithm that is guaranteed to reduce the multi-source NLA problem into decoupled single-source NLA problems in the noiseless case. Finally, we present a new polynomial rooting procedure for the latter problem, which again is guaranteed to find the solution in the noiseless case. In the presence of noise, the algebraic algorithm provides an inexpensive initialization for optimization-based methods.

[1]  F. Athley,et al.  On radar detection and direction finding using sparse arrays , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Björn E. Ottersten,et al.  Multiple invariance ESPRIT , 1992, IEEE Trans. Signal Process..

[3]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[4]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[5]  L. Lathauwer,et al.  Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.

[6]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[7]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[8]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[9]  Chafic Mokbel,et al.  Advantages of nonuniform arrays using root-MUSIC , 2010, Signal Process..

[10]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[11]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[12]  Eberhard Freitag,et al.  Analytic Functions of Several Complex Variables , 2011 .

[13]  Marius Pesavento,et al.  Rooting-Based Harmonic Retrieval Using Multiple Shift-Invariances: The Complete and the Incomplete Sample Cases , 2012, IEEE Transactions on Signal Processing.

[14]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[15]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  T. Minimum-Redundancy Linear Arrays , 2022 .

[17]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[18]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[19]  S. Haykin,et al.  Nonredundant arrays , 1986, Proceedings of the IEEE.

[20]  Adriano Camps,et al.  Synthesis of large low-redundancy linear arrays , 2001 .

[21]  Michael D. Zoltowski,et al.  Direction-finding with sparse rectangular dual-size spatial invariance array , 1998 .

[22]  Zhao Jicha DOA estimation using dimension reduction quaternion estimation of signal parameters via rotational invariance techniques , 2015 .

[23]  M. J. Wilson,et al.  Sparse-periodic hybrid array beamformer , 2007 .

[24]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[25]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[26]  Elizabeth Ralston,et al.  Ambiguity Resolution in Interferometry , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Yoram Bresler,et al.  A compact Cramer-Rao bound expression for parametric estimation of superimposed signals , 1992, IEEE Trans. Signal Process..

[28]  P. P. Vaidyanathan,et al.  Why does direct-MUSIC on sparse-arrays work? , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[29]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[30]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[31]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[32]  A. Willsky,et al.  Nonuniform array processing via the polynomial approach , 1989 .

[33]  Ed F. Deprettere,et al.  Multiresolution ESPRIT algorithm , 1999, IEEE Trans. Signal Process..

[34]  Lieven De Lathauwer,et al.  New Uniqueness Conditions for the Canonical Polyadic Decomposition of Third-Order Tensors , 2015, SIAM J. Matrix Anal. Appl..

[35]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..