Third-order methods for molecular geometry optimizations
暂无分享,去创建一个
Hans Peter Lüthi | T. H. Fischer | T. Fischer | H. Lüthi | J. Hutter | S. Vogel | J. Hutter | S. Vogel
[1] Peter Pulay,et al. Geometry optimization by direct inversion in the iterative subspace , 1984 .
[2] G. Diercksen,et al. SCF MO LCGO studies of hydrogen bonding: The hydrogen fluoride dimer , 1970 .
[3] Jon Baker,et al. Geometry optimization in cartesian coordinates: The end of the Z‐matrix? , 1991 .
[4] T. H. Dunning. Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .
[5] Amiram Goldblum,et al. Improvement of the hydrogen bonding correction to MNDO for calculations of biochemical interest , 1987 .
[6] A. Isaev,et al. MNDO calculations on hydrogen bonds. Modified function for core-core repulsion , 1984 .
[7] Peter Pulay,et al. Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .
[8] J. Gready,et al. Computational strategies for the optimization of equilibrium geometries and transition‐state structures at the semiempirical level , 1989 .
[9] J. Pople,et al. Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .
[10] Martin Quack,et al. Potential energy surface and energy levels of (HF)2 and its D isotopomers , 1990 .