Optical properties of diamond

Because of its excellent thermal-mechanical properties, diamond is a promising infrared window material. With the development of chemical vapor deposition (CVD) diamond technology, diamond windows and domes are becoming a practical reality. The infrared transmittance of type IIa and CVD diamond was characterized as a function of temperature, and the room-temperature ultraviolet transmittance of type IIa diamond was also measured. These experimental results were interpreted in terms of intrinsic and extrinsic lattice vibration models and the Urbach tail and weak absorption tail models. The first measurements of the temperature variation of the index of refraction in the 10-micrometers region for CVD diamond were obtained on a sample that showed strong modulation due to interference. Transmittance was investigated in most of the transparent range of diamond, although the 8- to 12-micrometers region is emphasized.

[1]  M. Nakayama,et al.  Size effects appearing in the Raman spectra of polycrystalline diamonds , 1992 .

[2]  Michael E. Thomas,et al.  Optical phonon characteristics of diamond, beryllia, and cubic zirconia , 1990, Optics & Photonics.

[3]  R. Messier,et al.  Current Issues and Problems in the Chemical Vapor Deposition of Diamond , 1990, Science.

[4]  G. N. Ramachandran Thermo-optic behaviour of solids , 1947 .

[5]  John E. Graebner,et al.  Unusually high thermal conductivity in diamond films , 1992 .

[6]  W J Tropf,et al.  Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency. , 1988, Applied optics.

[7]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[8]  R. Berman,et al.  The Thermal Conductivity of Diamonds , 1976 .

[9]  F. Bundy,et al.  Melting Point of Graphite at High Pressure: Heat of Fusion. , 1962, Science.

[10]  J. Kalnajs,et al.  High‐Precision Density Determination of Natural Diamonds , 1964 .

[11]  Klein,et al.  Critical-point phonon frequencies of diamond. , 1992, Physical review. B, Condensed matter.

[12]  F. J. Himpsel,et al.  Quantum photoyield of diamond(111)—A stable negative-affinity emitter , 1979 .

[13]  Malcolm B. McIntosh,et al.  High-temperature optical scatter characteristics of CVD diamond and natural type IIa diamond , 1993, Optics & Photonics.

[14]  Daniel C. Harris,et al.  Characterization of diamond films by thermogravimetric analysis and infrared spectroscopy , 1989 .

[15]  A. K. Ramdas,et al.  Brillouin scattering in diamond , 1975 .

[16]  Michael E. Thomas Multiphonon model for absorption in diamond , 1994, Optics & Photonics.

[17]  Fritz Peter,et al.  Über Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ , 1923 .

[18]  Donald T. Morelli,et al.  Phonon-defect scattering in high thermal conductivity diamond films , 1991 .

[19]  Papadopoulos,et al.  Optical properties of diamond. , 1991, Physical review. B, Condensed matter.

[20]  P. Koidl,et al.  Brillouin light scattering on chemical‐vapor‐deposited polycrystalline diamond: Evaluation of the elastic moduli , 1991 .

[21]  S. Rösch Die Optik des Fabulit, die Farbe des Brewsterwinkels und das Farbspielmoment , 1965 .

[22]  W. L. Bond,et al.  Nitrogen, a major impurity in common type I diamond , 1959 .

[23]  John Ziman,et al.  The thermal conductivity of dielectric crystals: the effect of isotopes , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  Keith Harris,et al.  Infrared optical characteristics of type 2A diamonds. , 1991, Applied optics.

[25]  R. L. Johnston,et al.  Temperature and pressure variation of the refractive index of diamond. , 1977, Applied optics.