Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements

We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conserved. Numerical results demonstrate the efficiency of hybrid meshes compared to pure tetrahedral meshes or hexahedral meshes obtained by splitting tetrahedra into hexahedra.

[1]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[2]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[3]  Conforming discretizations on tetrahedrons , pyramids , prisms and hexahedrons , 2007 .

[4]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[5]  Peter Knabner,et al.  The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements , 2001, Numerische Mathematik.

[6]  N. Nigam,et al.  Higher-order finite elements on pyramids , 2006 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[9]  Marc Duruflé,et al.  Application of Discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic , 2009 .

[10]  Markus Clemens,et al.  Iterative Methods for the Solution of Very Large Complex Symmetric Linear Systems of Equations in El , 1996 .

[11]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[12]  Gary Cohen,et al.  MIXED FINITE ELEMENTS WITH MASS-LUMPING FOR THE TRANSIENT WAVE EQUATION , 2000 .

[13]  Patrick Joly,et al.  Influence of Gauss and Gauss‐Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain , 2009 .

[14]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[15]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[16]  Frank Claeyssen,et al.  A new family of finite elements: the pyramidal elements , 1996 .

[17]  Y. Erlangga Some numerical aspects for solving sparse large linear systems derived from the Helmholtz equation , 2002 .

[18]  Franco P. Preparata,et al.  Using Pyramids in Mixed Meshes - Point Placement and Basis Functions , 2000 .

[19]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[20]  Andrew F. Peterson,et al.  Higher order interpolatory vector bases on pyramidal elements , 1998 .

[21]  George Em Karniadakis,et al.  Spectral / hp Methods For Elliptic Problems on Hybrid Grids , 1998 .

[22]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[23]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[24]  G. Bedrosian Shape functions and integration formulas for three‐dimensional finite element analysis , 1992 .

[25]  Gary Cohen,et al.  A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..

[26]  Sébastien Pernet,et al.  HP a-priori error estimates for a non-dissipative spectral discontinuous Galerkin method to solve the Maxwell equations in the time domain , 2007, Math. Comput..

[27]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[28]  Spencer J. Sherwin,et al.  Hierarchical hp finite elements in hybrid domains , 1997 .

[29]  O. J. Marlowe,et al.  Numerical integration over simplexes and cones , 1956 .

[30]  Marc Duruflé,et al.  Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .

[31]  Simon P. Walker,et al.  Polynomial basis functions on pyramidal elements , 2007 .