Monotonically convergent algorithms for symmetric tensor approximation
暂无分享,去创建一个
[1] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[2] Zhaojun Bai,et al. Optimizing Halley's Iteration for Computing the Matrix Polar Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[3] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.
[4] P. Comon,et al. Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size , 2010, IEEE Transactions on Neural Networks.
[5] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[6] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[7] P. Comon,et al. Generic and typical ranks of multi-way arrays , 2009 .
[8] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[9] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[10] V. Mehrmann,et al. Best subspace tensor approximations , 2008, 0805.4220.
[11] Alper T. Erdogan,et al. On the Convergence of ICA Algorithms With Symmetric Orthogonalization , 2008, IEEE Transactions on Signal Processing.
[12] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[13] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[14] Lieven De Lathauwer,et al. Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.
[15] Lek-Heng Lim,et al. Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem , 2006, SIAM J. Matrix Anal. Appl..
[16] Xi-Lin Li,et al. A new gradient search interpretation of super-exponential algorithm , 2006, IEEE Signal Processing Letters.
[17] Phillip A. Regalia,et al. Monotonic convergence of fixed-point algorithms for ICA , 2003, IEEE Trans. Neural Networks.
[18] Phillip A. Regalia,et al. Properties of some blind equalization criteria in noisy multiuser environments , 2001, IEEE Trans. Signal Process..
[19] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[20] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[21] J. Berge,et al. The typical rank of tall three-way arrays , 2000 .
[22] C. Loan. The ubiquitous Kronecker product , 2000 .
[23] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[24] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[25] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[26] Heinz H. Bauschke,et al. Dykstras algorithm with bregman projections: A convergence proof , 2000 .
[27] Thomas Kailath,et al. Fast reliable algorithms for matrices with structure , 1999 .
[28] P. Regalia,et al. Tensor displacement structures and polyspectral matching , 1999 .
[29] Nicholas J. Higham,et al. A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..
[30] E. Weinstein,et al. Super-exponential methods for blind deconvolution , 1991, 17th Convention of Electrical and Electronics Engineers in Israel.
[31] Nader H. Bshouty,et al. Maximal Rank of m x n x (mn - k) Tensors , 1990, SIAM J. Comput..
[32] Ehud Weinstein,et al. New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.
[33] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[34] N. Higham. Computing the polar decomposition with applications , 1986 .
[35] S. R. Searle,et al. On the history of the kronecker product , 1983 .
[36] T. Howell,et al. Global properties of tensor rank , 1978 .
[37] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[38] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[39] S. Friedland,et al. Fast low rank approximations of matrices and tensors , 2011 .
[40] P. Regalia,et al. Tensor Approximation and Signal Processing Applications , 2005 .
[41] Nicholas J. Higham,et al. Computing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups , 2004, SIAM J. Matrix Anal. Appl..
[42] V. Olshevsky. Structured Matrices in Mathematics, Computer Science, and Engineering II , 2001 .
[43] S. R. Searle,et al. The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .
[44] L. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .