Monotonically convergent algorithms for symmetric tensor approximation

[1]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[2]  Zhaojun Bai,et al.  Optimizing Halley's Iteration for Computing the Matrix Polar Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[3]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[4]  P. Comon,et al.  Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size , 2010, IEEE Transactions on Neural Networks.

[5]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[6]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[7]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[8]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[9]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[10]  V. Mehrmann,et al.  Best subspace tensor approximations , 2008, 0805.4220.

[11]  Alper T. Erdogan,et al.  On the Convergence of ICA Algorithms With Symmetric Orthogonalization , 2008, IEEE Transactions on Signal Processing.

[12]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[13]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[14]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[15]  Lek-Heng Lim,et al.  Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem , 2006, SIAM J. Matrix Anal. Appl..

[16]  Xi-Lin Li,et al.  A new gradient search interpretation of super-exponential algorithm , 2006, IEEE Signal Processing Letters.

[17]  Phillip A. Regalia,et al.  Monotonic convergence of fixed-point algorithms for ICA , 2003, IEEE Trans. Neural Networks.

[18]  Phillip A. Regalia,et al.  Properties of some blind equalization criteria in noisy multiuser environments , 2001, IEEE Trans. Signal Process..

[19]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[20]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[21]  J. Berge,et al.  The typical rank of tall three-way arrays , 2000 .

[22]  C. Loan The ubiquitous Kronecker product , 2000 .

[23]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[24]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[25]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[26]  Heinz H. Bauschke,et al.  Dykstras algorithm with bregman projections: A convergence proof , 2000 .

[27]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[28]  P. Regalia,et al.  Tensor displacement structures and polyspectral matching , 1999 .

[29]  Nicholas J. Higham,et al.  A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..

[30]  E. Weinstein,et al.  Super-exponential methods for blind deconvolution , 1991, 17th Convention of Electrical and Electronics Engineers in Israel.

[31]  Nader H. Bshouty,et al.  Maximal Rank of m x n x (mn - k) Tensors , 1990, SIAM J. Comput..

[32]  Ehud Weinstein,et al.  New criteria for blind deconvolution of nonminimum phase systems (channels) , 1990, IEEE Trans. Inf. Theory.

[33]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[34]  N. Higham Computing the polar decomposition with applications , 1986 .

[35]  S. R. Searle,et al.  On the history of the kronecker product , 1983 .

[36]  T. Howell,et al.  Global properties of tensor rank , 1978 .

[37]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[38]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[39]  S. Friedland,et al.  Fast low rank approximations of matrices and tensors , 2011 .

[40]  P. Regalia,et al.  Tensor Approximation and Signal Processing Applications , 2005 .

[41]  Nicholas J. Higham,et al.  Computing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups , 2004, SIAM J. Matrix Anal. Appl..

[42]  V. Olshevsky Structured Matrices in Mathematics, Computer Science, and Engineering II , 2001 .

[43]  S. R. Searle,et al.  The Vec-Permutation Matrix, the Vec Operator and Kronecker Products: A Review , 1981 .

[44]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .