Atomically thin gallium layers from solid-melt exfoliation

A unique way to synthesize innovative 2D gallenene. Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices.

[1]  M. Reiter,et al.  Sol , 2018, Definitions.

[2]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[3]  Kourosh Kalantar-Zadeh,et al.  Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals , 2017, Nature Communications.

[4]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[5]  ラリー バーチフィールド New carbon allotrope , 2016 .

[6]  Hongli Zhu,et al.  Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction , 2016, Nature Communications.

[7]  A. Singh,et al.  Diffusive nature of thermal transport in stanene. , 2015, Physical chemistry chemical physics : PCCP.

[8]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[9]  H. Sachdev Disclosing boron's thinnest side , 2015, Science.

[10]  Yi-bing Cheng,et al.  4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells. , 2015, Optics express.

[11]  Robert Vajtai,et al.  Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. , 2015, ACS nano.

[12]  Fa Wang,et al.  Quantum Griffiths singularity of superconductor-metal transition in Ga thin films , 2015, Science.

[13]  A. Goriely,et al.  Plasmonic‐Induced Photon Recycling in Metal Halide Perovskite Solar Cells , 2015 .

[14]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[15]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[16]  Philippe Sonnet,et al.  Continuous germanene layer on Al(111). , 2015, Nano letters.

[17]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[18]  M. Ezawa,et al.  Aluminene as highly hole‐doped graphene , 2015, 1502.05874.

[19]  Benjamin J. M. Brenny,et al.  Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. , 2015, ACS nano.

[20]  Y. Kawazoe,et al.  Penta-graphene: A new carbon allotrope , 2015, Proceedings of the National Academy of Sciences.

[21]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[22]  First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene , 2014, 1404.2874.

[23]  Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001). , 2014, Physical review letters.

[24]  Michael Wörle,et al.  Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage , 2014, Journal of the American Chemical Society.

[25]  Angel Rubio,et al.  Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator , 2014, 1407.1929.

[26]  M. E. Dávila,et al.  Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene , 2014, 1406.2488.

[27]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[28]  Binghai Yan,et al.  Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. , 2014, Physical review letters.

[29]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[30]  J. Eckert,et al.  Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores , 2014, Science.

[31]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[32]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[33]  A. Taleb-Ibrahimi,et al.  Dirac cone with helical spin polarization in ultrathin α-Sn(001) films. , 2013, Physical review letters.

[34]  A. Bostwick,et al.  Elemental topological insulator with tunable Fermi level: strained α-Sn on InSb(001). , 2013, Physical review letters.

[35]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[36]  Binghai Yan,et al.  Large-gap quantum spin Hall insulators in tin films. , 2013, Physical review letters.

[37]  Ming Hu,et al.  Anomalous thermal response of silicene to uniaxial stretching , 2013 .

[38]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[39]  Wolfgang Windl,et al.  Stability and exfoliation of germanane: a germanium graphane analogue. , 2013, ACS nano.

[40]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[41]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[42]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[43]  M. Aono,et al.  Multilayer silicene nanoribbons. , 2012, Nano letters.

[44]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[45]  Natalio Mingo,et al.  Thermal conductivity of diamond nanowires from first principles , 2012 .

[46]  S. Bhowmick,et al.  Polymorphism of two-dimensional boron. , 2012, Nano letters.

[47]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[48]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[49]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[50]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[51]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[52]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[53]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[54]  M. Aono,et al.  Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: Si(111)-(√7 × √3)-In. , 2011, Physical review letters.

[55]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[56]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[57]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[58]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[59]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[60]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[61]  Xi Chen,et al.  Superconductivity in one-atomic-layer metal films grown on Si(111) , 2010 .

[62]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[63]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[64]  Chih-Kang Shih,et al.  Superconductivity at the Two-Dimensional Limit , 2009, Science.

[65]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[66]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[67]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[68]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[69]  N. Zheludev,et al.  Resetting single nanoparticle structural phase with nanosecond pulses , 2007 .

[70]  N. Zheludev,et al.  All-optical phase-change memory in a single gallium nanoparticle. , 2007, Physical review letters.

[71]  N. Zheludev,et al.  Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate. , 2005, Nano letters.

[72]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  N. Zheludev,et al.  Light-induced structural transformations in a single gallium nanoparticulate , 2005, cond-mat/0503212.

[74]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[75]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[76]  M. Kushwaha Plasmons and magnetoplasmons in semiconductor heterostructures , 2001 .

[77]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[78]  J. W. Allison,et al.  NIST X-Ray Photoelectron Spectroscopy Database 1, Version 2 , 1997 .

[79]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[80]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[81]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[82]  Kawamura,et al.  New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid. , 1995, Physical review letters.

[83]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[84]  Xingao Gong,et al.  α-gallium : a metallic molecular crystal , 1991 .

[85]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[86]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[87]  J. Inglesfield The structure and phase changes of gallium , 1968 .

[88]  V. Heine Crystal structure of gallium metal , 1968 .

[89]  J. Ziman Principles of the Theory of Solids , 1965 .