Some automated methods of smoothing time-dependent data
暂无分享,去创建一个
[1] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[2] P. Hall. Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .
[3] B. Silverman,et al. Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .
[4] A. P. Dawid,et al. Present position and potential developments: some personal views , 1984 .
[5] D. W. Scott,et al. Biased and Unbiased Cross-Validation in Density Estimation , 1987 .
[6] Jeffrey D. Hart,et al. Testing the equality of two regression curves using linear smoothers , 1991 .
[7] B. Rao. BERRY-ESSEEN TYPE BOUND FOR DENSITY ESTIMATORS OF STATIONARY MARKOV PROCESSES , 1977 .
[8] J. Hart,et al. Consistency of cross-validation when the data are curves , 1993 .
[9] James Stephen Marron,et al. Comparison of data-driven bandwith selectors , 1988 .
[10] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[11] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[12] H. Müller,et al. Nonparametric Regression Analysis of Growth Curves , 1984 .
[13] S. Sheather. A data-based algorithm for choosing the window width when estimating the density at a point , 1983 .
[14] T. Wehrly,et al. Kernel estimation for additive models under dependence , 1993 .
[15] R. Fraiman,et al. Smoothing dependent observations , 1994 .
[16] R. Kohn,et al. Nonparametric spline regression with autoregressive moving average errors , 1992 .
[17] David B. Holiday. The estimation of derivatives of a nonparametric regression function when the data are correlated , 1989 .
[18] H. Newton,et al. TIMESLAB: A Times Series Analysis Laboratory , 1989 .
[19] Shean-Tsong Chiu,et al. Bandwidth selection for kernel estimate with correlated noise , 1989 .
[20] Matt P. Wand. Finite sample performance of density estimators under moving average dependence , 1992 .
[21] J. Hart,et al. Kernel Regression Estimation Using Repeated Measurements Data , 1986 .
[22] H. Müller,et al. Kernel estimation of regression functions , 1979 .
[23] Wolfgang Härdle,et al. Nonparametric Curve Estimation from Time Series , 1989 .
[24] Elias Masry,et al. Recursive probability density estimation for weakly dependent stationary processes , 1986, IEEE Trans. Inf. Theory.
[25] C. J. Stone,et al. Nonparametric function estimation involving time series , 1992 .
[26] Density estimation for linear processes , 1983 .
[27] J. Raz,et al. Analysis of repeated measurements using nonparametric smoothers and randomization tests. , 1989, Biometrics.
[28] H. L. Le Roy,et al. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .
[29] L. Györfi,et al. Strong consistency and rates for recursive probability density estimators of stationary processes , 1987 .
[30] Jeffrey D. Hart,et al. Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .
[31] Jeffrey D. Hart,et al. Kernel Regression When the Boundary Region is Large, with an Application to Testing the Adequacy of Polynomial Models , 1992 .
[32] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[33] L. Ljung. Convergence analysis of parametric identification methods , 1978 .
[34] T. Gasser,et al. Choice of bandwidth for kernel regression when residuals are correlated , 1992 .
[35] László Györfi,et al. The L, and L, Strong Consistency Kernel Density Estimation of Recursive from Dependent Samples , 1990 .
[36] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[37] Ulrich Stadtmüller,et al. Detecting dependencies in smooth regression models , 1988 .
[38] G. Collomb. Propriétés de convergence presque complète du prédicteur à noyau , 1984 .
[39] P. Robinson. Kernel estimation and interpolation for time series containing missing observations , 1984 .
[40] Lanh Tat Tran,et al. Kernel density estimation for linear processes , 1992 .
[41] H. Müller. Nonparametric regression analysis of longitudinal data , 1988 .
[42] R. Tibshirani,et al. Linear Smoothers and Additive Models , 1989 .
[43] P. Vieu,et al. Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .
[44] C. K. Chu,et al. Nonparametric estimation of a regression function with dependent observations , 1994 .
[45] Peter Hall,et al. Convergence rates in density estimation for data from infinite-order moving average processes , 1990 .
[46] M. C. Jones,et al. On optimal data-based bandwidth selection in kernel density estimation , 1991 .
[47] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[48] P. Diggle. Time Series: A Biostatistical Introduction , 1990 .
[49] Paul L. Speckman,et al. Confidence bands in nonparametric regression , 1993 .
[50] T. J. Sweeting,et al. Prequential test of model fit , 1992 .
[51] T. Hastie,et al. Local Regression: Automatic Kernel Carpentry , 1993 .
[52] Naomi Altman,et al. Kernel Smoothing of Data with Correlated Errors , 1990 .
[53] G. Roussas. Nonparametric estimation in Markov processes , 1969 .
[54] Peter Hall,et al. Nonparametric regression with long-range dependence , 1990 .
[55] Young K. Truong,et al. On bandwidth choice for density estimation with dependent data , 1995 .
[56] S. Yakowitz. Nonparametric Estimation of Markov Transition Functions , 1979 .
[57] R. L. Eubank,et al. Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .
[58] I. Ahmad. Strong consistency of density estimation by orthogonal series methods for dependent variables with applications , 1979 .
[59] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[60] S. Yakowitz. Nonparametric Density Estimation, Prediction, and Regression for Markov Sequences , 1985 .
[61] M. R. Leadbetter,et al. On smoothed probability density estimation for stationary processes , 1986 .
[62] J. D. Hart,et al. THE ANALYSIS OF CHANGE-POINT DATA WITH DEPENDENT ERRORS , 1994 .
[63] W. Härdle,et al. Kernel regression smoothing of time series , 1992 .
[64] Jeffrey D. Hart,et al. Efficiency of a Kernel Density Estimator under an Autoregressive Dependence Model , 1984 .
[65] J. Marron,et al. Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .
[66] J. Raz,et al. Selecting the smoothing parameter for estimation of slowly changing evoked potential signals. , 1989, Biometrics.
[67] P. Robinson. NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .
[68] J. Hart. Kernel regression estimation with time series errors , 1991 .
[69] Scott L. Zeger,et al. A Frequency Domain Selection Criterion for Regression with Autocorrelated Errors , 1990 .
[70] Jianqing Fan. Design-adaptive Nonparametric Regression , 1992 .
[71] C. J. Stone,et al. An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .
[72] Philippe Vieu,et al. Growth curves: a two-stage nonparametric approach , 1994 .