Some automated methods of smoothing time-dependent data

Nonparametric function estimation based upon time-dependent data is a challenging problem to both the data analyst and the theoretician. This paper serves as an introduction to the problem and discusses some of the approaches that have been proposed for smoothing autocorrelated data. A principal theme will be accounting for correlation in the data driven choice of a function estimator's smoothing parameter. Data-driven smoothing is considered in various settings including probability density estimation, repeated measures data, and time series trend estimation. Both applications and theoretical issues are addressed, and some open problems will be discussed.

[1]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[2]  P. Hall Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .

[3]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[4]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[5]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[6]  Jeffrey D. Hart,et al.  Testing the equality of two regression curves using linear smoothers , 1991 .

[7]  B. Rao BERRY-ESSEEN TYPE BOUND FOR DENSITY ESTIMATORS OF STATIONARY MARKOV PROCESSES , 1977 .

[8]  J. Hart,et al.  Consistency of cross-validation when the data are curves , 1993 .

[9]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[10]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[11]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[12]  H. Müller,et al.  Nonparametric Regression Analysis of Growth Curves , 1984 .

[13]  S. Sheather A data-based algorithm for choosing the window width when estimating the density at a point , 1983 .

[14]  T. Wehrly,et al.  Kernel estimation for additive models under dependence , 1993 .

[15]  R. Fraiman,et al.  Smoothing dependent observations , 1994 .

[16]  R. Kohn,et al.  Nonparametric spline regression with autoregressive moving average errors , 1992 .

[17]  David B. Holiday The estimation of derivatives of a nonparametric regression function when the data are correlated , 1989 .

[18]  H. Newton,et al.  TIMESLAB: A Times Series Analysis Laboratory , 1989 .

[19]  Shean-Tsong Chiu,et al.  Bandwidth selection for kernel estimate with correlated noise , 1989 .

[20]  Matt P. Wand Finite sample performance of density estimators under moving average dependence , 1992 .

[21]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[22]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[23]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[24]  Elias Masry,et al.  Recursive probability density estimation for weakly dependent stationary processes , 1986, IEEE Trans. Inf. Theory.

[25]  C. J. Stone,et al.  Nonparametric function estimation involving time series , 1992 .

[26]  Density estimation for linear processes , 1983 .

[27]  J. Raz,et al.  Analysis of repeated measurements using nonparametric smoothers and randomization tests. , 1989, Biometrics.

[28]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[29]  L. Györfi,et al.  Strong consistency and rates for recursive probability density estimators of stationary processes , 1987 .

[30]  Jeffrey D. Hart,et al.  Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .

[31]  Jeffrey D. Hart,et al.  Kernel Regression When the Boundary Region is Large, with an Application to Testing the Adequacy of Polynomial Models , 1992 .

[32]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[33]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[34]  T. Gasser,et al.  Choice of bandwidth for kernel regression when residuals are correlated , 1992 .

[35]  László Györfi,et al.  The L, and L, Strong Consistency Kernel Density Estimation of Recursive from Dependent Samples , 1990 .

[36]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[37]  Ulrich Stadtmüller,et al.  Detecting dependencies in smooth regression models , 1988 .

[38]  G. Collomb Propriétés de convergence presque complète du prédicteur à noyau , 1984 .

[39]  P. Robinson Kernel estimation and interpolation for time series containing missing observations , 1984 .

[40]  Lanh Tat Tran,et al.  Kernel density estimation for linear processes , 1992 .

[41]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[42]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[43]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[44]  C. K. Chu,et al.  Nonparametric estimation of a regression function with dependent observations , 1994 .

[45]  Peter Hall,et al.  Convergence rates in density estimation for data from infinite-order moving average processes , 1990 .

[46]  M. C. Jones,et al.  On optimal data-based bandwidth selection in kernel density estimation , 1991 .

[47]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[48]  P. Diggle Time Series: A Biostatistical Introduction , 1990 .

[49]  Paul L. Speckman,et al.  Confidence bands in nonparametric regression , 1993 .

[50]  T. J. Sweeting,et al.  Prequential test of model fit , 1992 .

[51]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[52]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[53]  G. Roussas Nonparametric estimation in Markov processes , 1969 .

[54]  Peter Hall,et al.  Nonparametric regression with long-range dependence , 1990 .

[55]  Young K. Truong,et al.  On bandwidth choice for density estimation with dependent data , 1995 .

[56]  S. Yakowitz Nonparametric Estimation of Markov Transition Functions , 1979 .

[57]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[58]  I. Ahmad Strong consistency of density estimation by orthogonal series methods for dependent variables with applications , 1979 .

[59]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[60]  S. Yakowitz Nonparametric Density Estimation, Prediction, and Regression for Markov Sequences , 1985 .

[61]  M. R. Leadbetter,et al.  On smoothed probability density estimation for stationary processes , 1986 .

[62]  J. D. Hart,et al.  THE ANALYSIS OF CHANGE-POINT DATA WITH DEPENDENT ERRORS , 1994 .

[63]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[64]  Jeffrey D. Hart,et al.  Efficiency of a Kernel Density Estimator under an Autoregressive Dependence Model , 1984 .

[65]  J. Marron,et al.  Comparison of Two Bandwidth Selectors with Dependent Errors , 1991 .

[66]  J. Raz,et al.  Selecting the smoothing parameter for estimation of slowly changing evoked potential signals. , 1989, Biometrics.

[67]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[68]  J. Hart Kernel regression estimation with time series errors , 1991 .

[69]  Scott L. Zeger,et al.  A Frequency Domain Selection Criterion for Regression with Autocorrelated Errors , 1990 .

[70]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[71]  C. J. Stone,et al.  An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .

[72]  Philippe Vieu,et al.  Growth curves: a two-stage nonparametric approach , 1994 .