New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms

Leucine-Rich Repeats Receptor-Like Kinase (LRR-RLK) genes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots). We identified 101 orthologous groups (OGs) of genes being conserved among almost all monocot and dicot species analyzed. We observed that more than 10% of these OGs are absent in the Brassicaceae species studied. We show that the ECD structural features are not always conserved among orthologs, suggesting that functions may have diverged in some OG sets. Moreover, we looked at targets of positive selection footprints in 12 pairs of OGs and noticed that depending on the subgroups, positive selection occurred more frequently either in the ECDs or in the KDs.

[1]  J. Walker,et al.  Biochemical properties of the autophosphorylation of RLK5, a receptor-like protein kinase from Arabidopsis thaliana. , 1994, Biochimica et biophysica acta.

[2]  J. Deisenhofer,et al.  The leucine-rich repeat: a versatile binding motif. , 1994, Trends in biochemical sciences.

[3]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[4]  T. Kao,et al.  Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. , 1994, The Plant cell.

[5]  Li-li Chen,et al.  A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21 , 1995, Science.

[6]  N. Mitsukawa,et al.  The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. , 1996, The Plant cell.

[7]  M. Toonen,et al.  A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. , 1997, Development.

[8]  J. Chory,et al.  A Putative Leucine-Rich Repeat Receptor Kinase Involved in Brassinosteroid Signal Transduction , 1997, Cell.

[9]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[10]  Kaizhong Zhang,et al.  Tree pattern matching , 1997, Pattern Matching Algorithms.

[11]  Robert W. Williams,et al.  The CLAVATA1 Gene Encodes a Putative Receptor Kinase That Controls Shoot and Floral Meristem Size in Arabidopsis , 1997, Cell.

[12]  R. Deeken,et al.  Light-repressible receptor protein kinase: a novel photo-regulated gene from Arabidopsis thaliana , 1997, Planta.

[13]  J. Muschietti,et al.  Pollen Tube Localization Implies a Role in Pollen–Pistil Interactions for the Tomato Receptor-like Protein Kinases LePRK1 and LePRK2 , 1998, Plant Cell.

[14]  A. Kajava Structural diversity of leucine-rich repeat proteins. , 1998, Journal of molecular biology.

[15]  K. Feldmann,et al.  Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. , 1999, Plant physiology.

[16]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[17]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[18]  M. Sudol,et al.  The importance of being proline: the interaction of proline‐rich motifs in signaling proteins with their cognate domains , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[20]  S. Shiu,et al.  Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling , 2001, Science's STKE.

[21]  U. Grossniklaus,et al.  The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. , 2001, Plant physiology.

[22]  C. Dumas,et al.  Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family , 2001, Planta.

[23]  S. Shiu,et al.  Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Oliphant,et al.  A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). , 2002, Science.

[25]  F. Ausubel,et al.  MAP kinase signalling cascade in Arabidopsis innate immunity , 2002, Nature.

[26]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[27]  Olivier Gascuel,et al.  Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle , 2002, J. Comput. Biol..

[28]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica) , 2002, Science.

[29]  Olivier Gascuel,et al.  Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle , 2002, WABI.

[30]  J. Willemse,et al.  The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. , 2002, Genes & development.

[31]  S. Shiu,et al.  Expansion of the Receptor-Like Kinase/Pelle Gene Family and Receptor-Like Proteins in Arabidopsis1[w] , 2003, Plant Physiology.

[32]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[33]  A. Diévart,et al.  Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. , 2003, Current opinion in plant biology.

[34]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[35]  Klaus F. X. Mayer,et al.  Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice , 2004, The Plant Cell Online.

[36]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[37]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[38]  Guy Perrière,et al.  Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases , 2005, Bioinform..

[39]  Ana I. Caño-Delgado,et al.  Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1 , 2005, Nature.

[40]  D. Potter,et al.  Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. , 2005, American journal of botany.

[41]  R. Yadav,et al.  STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Boller,et al.  Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. , 2006, Genes & development.

[43]  Wojciech Burza,et al.  Cucumber (Cucumis sativus L.). , 2006, Methods in molecular biology.

[44]  Y. Matsubayashi,et al.  Disruption and Overexpression of Arabidopsis Phytosulfokine Receptor Gene Affects Cellular Longevity and Potential for Growth1 , 2006, Plant Physiology.

[45]  S. Robatzek,et al.  Induced Endocytosis of the Receptor Kinase FLS2 , 2006, Plant signaling & behavior.

[46]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[47]  Jihyun F. Kim,et al.  Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. , 2006, Molecular plant-microbe interactions : MPMI.

[48]  Y. Matsubayashi,et al.  Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[49]  Alexandra M. E. Jones,et al.  The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants , 2007, Proceedings of the National Academy of Sciences.

[50]  Jonathan D. G. Jones,et al.  A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence , 2007, Nature.

[51]  S. Turner,et al.  PXY, a Receptor-like Kinase Essential for Maintaining Polarity during Plant Vascular-Tissue Development , 2007, Current Biology.

[52]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[53]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[54]  S. D. de Vries,et al.  Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE Proteins Serve Brassinosteroid-Dependent and -Independent Signaling Pathways1[C][W] , 2008, Plant Physiology.

[55]  J. Aker,et al.  Plasma Membrane Receptor Complexes , 2008, Plant Physiology.

[56]  T. Baskin,et al.  Two Leucine-Rich Repeat Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and ACC Synthase in Arabidopsis[W] , 2008, The Plant Cell Online.

[57]  H. Mori,et al.  Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[58]  Stephen M. Mount,et al.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) , 2008, Nature.

[59]  Z. Hong,et al.  Multiple Mechanism–Mediated Retention of a Defective Brassinosteroid Receptor in the Endoplasmic Reticulum of Arabidopsis[W] , 2008, The Plant Cell Online.

[60]  Christophe Périn,et al.  GreenPhylDB: a database for plant comparative genomics , 2007, Nucleic Acids Res..

[61]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[62]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[63]  Peer Bork,et al.  SMART 6: recent updates and new developments , 2008, Nucleic Acids Res..

[64]  T. Boller,et al.  A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. , 2009, Annual review of plant biology.

[65]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[66]  P. He,et al.  One for all: the receptor-associated kinase BAK1. , 2009, Trends in plant science.

[67]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[68]  C. Zipfel,et al.  Control of the pattern‐recognition receptor EFR by an ER protein complex in plant immunity , 2009, The EMBO journal.

[69]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[70]  J. Estevez,et al.  The ERECTA Receptor-Like Kinase Regulates Cell Wall-Mediated Resistance to Pathogens in Arabidopsis thaliana. , 2009, Molecular plant-microbe interactions : MPMI.

[71]  Asan,et al.  The genome of the cucumber, Cucumis sativus L. , 2009, Nature Genetics.

[72]  Jonathan D. G. Jones,et al.  Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR , 2009, Proceedings of the National Academy of Sciences.

[73]  Niloufer G Irani,et al.  Receptor endocytosis and signaling in plants. , 2009, Current opinion in plant biology.

[74]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[75]  S. Magallón,et al.  Angiosperm diversification through time. , 2009, American journal of botany.

[76]  S. Chen,et al.  Analysis of expressed receptor-like kinases (RLKs) in soybean. , 2009, Journal of genetics and genomics = Yi chuan xue bao.

[77]  She Chen,et al.  Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. , 2009, Cell host & microbe.

[78]  Melissa D. Lehti-Shiu,et al.  Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes1[W][OA] , 2009, Plant Physiology.

[79]  Z. Hong,et al.  Mutations of an α1,6 Mannosyltransferase Inhibit Endoplasmic Reticulum–Associated Degradation of Defective Brassinosteroid Receptors in Arabidopsis[C][W] , 2009, The Plant Cell Online.

[80]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[81]  Chen Li,et al.  The cysteine pairs in CLV2 are not necessary for sensing the CLV3 peptide in shoot and root meristems. , 2010, Journal of integrative plant biology.

[82]  B. Haas,et al.  Draft genome sequence of the oilseed species Ricinus communis , 2010, Nature Biotechnology.

[83]  S. Renner,et al.  Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia , 2010, Proceedings of the National Academy of Sciences.

[84]  R. Xavier,et al.  Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity , 2010, Proceedings of the National Academy of Sciences.

[85]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[86]  Z. Hong,et al.  Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis , 2010, Proceedings of the National Academy of Sciences.

[87]  D. Galbraith,et al.  Genome Structures and Halophyte-Specific Gene Expression of the Extremophile Thellungiella parvula in Comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis1[W] , 2010, Plant Physiology.

[88]  Sai Guna Ranjan Gurazada,et al.  Genome sequencing and analysis of the model grass Brachypodium distachyon , 2010, Nature.

[89]  S. Postel,et al.  Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2* , 2010, The Journal of Biological Chemistry.

[90]  T. Boller,et al.  Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1* , 2010, The Journal of Biological Chemistry.

[91]  R. Hedrich,et al.  A role for PSK signaling in wounding and microbial interactions in Arabidopsis. , 2010, Physiologia plantarum.

[92]  M. Lewis,et al.  The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis , 2009, Development.

[93]  D. Hincha,et al.  Faculty Opinions recommendation of Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. , 2010 .

[94]  Y. Saijo ER quality control of immune receptors and regulators in plants , 2010, Cellular microbiology.

[95]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[96]  I. Wilson,et al.  Structural basis of steroid hormone perception by the receptor kinase BRI1 , 2011, Nature.

[97]  J. Poulain,et al.  The genome of Theobroma cacao , 2011, Nature Genetics.

[98]  Alexandra M. E. Jones,et al.  The Arabidopsis Leucine-Rich Repeat Receptor–Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens[W] , 2011, Plant Cell.

[99]  J. Chai,et al.  Structural insight into brassinosteroid perception by BRI1 , 2011, Nature.

[100]  E. Bornberg-Bauer,et al.  Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes , 2011, Nucleic acids research.

[101]  Nikhil A. Joshi,et al.  Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection , 2011, BMC Genomics.

[102]  H. Bohnert,et al.  The genome of the extremophile crucifer Thellungiella parvula , 2011, Nature Genetics.

[103]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[104]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[105]  Y. Kohara,et al.  Sequence Analysis of the Genome of an Oil-Bearing Tree, Jatropha curcas L. , 2010, DNA research : an international journal for rapid publication of reports on genes and genomes.

[106]  E. Danchin,et al.  An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. , 2011, Plant, cell & environment.

[107]  Jeremy D. DeBarry,et al.  De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera) , 2011, Nature Biotechnology.

[108]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[109]  Christian M. Zmasek,et al.  GreenPhylDB v2.0: comparative and functional genomics in plants , 2010, Nucleic Acids Res..

[110]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[111]  Sorina C. Popescu,et al.  Arabidopsis RTNLB1 and RTNLB2 Reticulon-Like Proteins Regulate Intracellular Trafficking and Activity of the FLS2 Immune Receptor[C][W] , 2011, Plant Cell.

[112]  T. Harkins,et al.  The Cassava Genome: Current Progress, Future Directions , 2012, Tropical Plant Biology.

[113]  Michael S. Barker,et al.  The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants , 2011, Science.

[114]  D. Rokhsar,et al.  Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies , 2012, BMC Genomics.

[115]  O. Gascuel,et al.  Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes , 2011, Systematic biology.

[116]  U. Eggli,et al.  Contemporaneous and recent radiations of the world's major succulent plant lineages , 2011, Proceedings of the National Academy of Sciences.

[117]  D. MacLean,et al.  Spatio-Temporal Cellular Dynamics of the Arabidopsis Flagellin Receptor Reveal Activation Status-Dependent Endosomal Sorting[C][W] , 2012, Plant Cell.

[118]  Huanming Yang,et al.  Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers , 2011, Nature Biotechnology.

[119]  John Z. Yu,et al.  The draft genome of a diploid cotton Gossypium raimondii , 2012, Nature Genetics.

[120]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[121]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[122]  A. Kimura,et al.  Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis , 2012, Proceedings of the National Academy of Sciences.

[123]  Jian Wang,et al.  Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential , 2012, Nature Biotechnology.

[124]  Justin N. Vaughn,et al.  Reference genome sequence of the model plant Setaria , 2012, Nature Biotechnology.

[125]  S. Hüttner,et al.  Endoplasmic Reticulum-Associated Degradation of Glycoproteins in Plants , 2012, Front. Plant Sci..

[126]  R. Guigó,et al.  The genome of melon (Cucumis melo L.) , 2012, Proceedings of the National Academy of Sciences.

[127]  Z. Hong,et al.  The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases. , 2012, Molecular plant.

[128]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[129]  T. Boller,et al.  Probing the Arabidopsis Flagellin Receptor: FLS2-FLS2 Association and the Contributions of Specific Domains to Signaling Function[W][OA] , 2012, Plant Cell.

[130]  Otávio J. B. Brustolini,et al.  The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense , 2012, BMC Plant Biology.

[131]  S. Kim,et al.  Assessing the diverse functions of BAK1 and its homologs in arabidopsis, beyond BR signaling and PTI responses , 2013, Molecules and cells.

[132]  C. Henzler,et al.  Molecular Mechanism for Plant Steroid Receptor Activation by Somatic Embryogenesis Co-Receptor Kinases , 2013, Science.

[133]  M. Sauter,et al.  Phytosulfokine control of growth occurs in the epidermis, is likely to be non-cell autonomous and is dependent on brassinosteroids. , 2013, The Plant journal : for cell and molecular biology.

[134]  J. Chai,et al.  Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide , 2013, Cell Research.

[135]  Alexandra M. E. Jones,et al.  Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection , 2013, Proceedings of the National Academy of Sciences.

[136]  Bin Zhou,et al.  Crystal structure of an LRR protein with two solenoids , 2012, Cell Research.

[137]  P. Ronald,et al.  The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. , 2013, Plant science : an international journal of experimental plant biology.

[138]  Xuewei Chen,et al.  Running Title : OsSERK 2 regulates receptor kinase-mediated immunity in rice An XA 21-Associated Kinase ( OsSERK 2 ) regulates immunity mediated by the XA 21 and XA 3 immune receptors , 2013 .

[139]  S. Robatzek,et al.  Mapping FLS2 function to structure: LRRs, kinase and its working bits , 2013, Protoplasma.

[140]  Jiehua Wang,et al.  Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes , 2013, BMC Genomics.

[141]  M. Stahl,et al.  The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. , 2013, The Plant journal : for cell and molecular biology.

[142]  J. Chai,et al.  Crystal structure of a plant leucine rich repeat protein with two island domains , 2013, Science China Life Sciences.

[143]  I. Hwang,et al.  The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of BRASSINOSTEROID INSENSITIVE1 in Arabidopsis[W] , 2013, Plant Cell.

[144]  R. Offringa,et al.  Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. , 2013, Journal of integrative plant biology.

[145]  C. Zipfel,et al.  Plant PRRs and the activation of innate immune signaling. , 2014, Molecular cell.

[146]  M. Parniske,et al.  Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE Ectodomain Promotes Complex Formation with Nod Factor Receptor 5 , 2014, Current Biology.

[147]  P. Thorpe,et al.  Plant immunity in plant–aphid interactions , 2014, Front. Plant Sci..

[148]  D. Maresch,et al.  A context-independent N-glycan signal targets the misfolded extracellular domain of Arabidopsis STRUBBELIG to endoplasmic-reticulum-associated degradation , 2014, The Biochemical journal.

[149]  G. Felix,et al.  Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. , 2014, Current opinion in plant biology.

[150]  K. Yamato,et al.  Physcomitrella patens Has Kinase-LRR R Gene Homologs and Interacting Proteins , 2014, PloS one.

[151]  E. Bieberich Synthesis, Processing, and Function of N-glycans in N-glycoproteins. , 2014, Advances in neurobiology.

[152]  V. Ranwez,et al.  Impact of recurrent gene duplication on adaptation of plant genomes , 2014, BMC Plant Biology.

[153]  Xuewei Chen,et al.  An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors , 2013, bioRxiv.

[154]  Xiaofeng Wang,et al.  The Leucine-Rich Repeat Receptor Kinase BIR2 Is a Negative Regulator of BAK1 in Plant Immunity , 2014, Current Biology.

[155]  Y. Saijo,et al.  ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants , 2014, Front. Plant Sci..

[156]  M. Sanderson,et al.  Evolutionary dynamics of leucine‐rich repeat receptor‐like kinases and related genes in plants: A phylogenomic approach , 2014 .

[157]  M. Parniske,et al.  Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence. , 2014, The New phytologist.

[158]  A. Bent,et al.  FLS2-BAK1 Extracellular Domain Interaction Sites Required for Defense Signaling Activation , 2014, PloS one.

[159]  J. Chory,et al.  The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. , 2014, Trends in biochemical sciences.

[160]  M. Sauter,et al.  Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana. , 2015, Physiologia plantarum.

[161]  J. Chory,et al.  Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination , 2015, Nature Communications.

[162]  Dong Sub Kim,et al.  Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations. , 2015, Journal of plant physiology.

[163]  Jia Li,et al.  Genome-Wide Expression Pattern Analyses of the Arabidopsis Leucine-Rich Repeat Receptor-Like Kinases. , 2016, Molecular plant.

[164]  Y. Kang,et al.  Arabidopsis MAKR5 is a positive effector of BAM3‐dependent CLE45 signaling , 2016, EMBO reports.

[165]  G. Droc,et al.  Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms1[OPEN] , 2016, Plant Physiology.

[166]  Chang-Hui Shen The Genome , 2019, Diagnostic Molecular Biology.