Genotype-phenotype correlations in SCN8A -related disorders reveal prognostic and therapeutic implications Short SCN8A -related genotype-phenotype correlations

: We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A , encoding the voltage-gated Na + channel Na V 1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human Na V 1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in Epilepsy; IE=Intermediate Epilepsy; DEE= Developmental and Epileptic Encephalopathy; GE= Generalized Epilepsy; GOF= Gain-of-function; LOF=Loss-of-function. Schematic 2D representation of the SCN8A gene displaying the location of pathogenic variants, showing clustering of GOF variants and BFIE+IE+DEE phenotypes in the transmembrane regions, especially the voltage-sensor, while LOF variants and GE phenotypes are mainly seen in the pore regions.

Ethan M. Goldberg | Zara | Silvana | J. Howe | P. May | T. Mayer | P. Striano | J. Verhoeven | H. Lerche | J. Rho | G. Rubboli | D. Wieczorek | Manuela Pendziwiat | I. Helbig | H. Bassan | U. Hedrich | E. Gardella | I. Borggraefe | K. Štěrbová | I. Kanivets | B. Gérard | R. Guerrini | M. Abramov | S. Sartori | A. Poduri | P. Veggiotti | D. Lal | M. Motazacker | K. Helbig | M. S. Perry | L. Canafoglia | F. Bilan | D. Lederer | M. Gérard | Tobias | K. Howell | D. Hoffman-Zacharska | J. Lemke | C. Marini | J. Savatt | G. Lesca | A. Roubertie | K. Wain | I. Krey | M. Koko | M. Meuwissen | R. Leventer | J. Rebstock | J. Schubert | A. Berger | S. Ruf | M. Buzatu | M. Alber | B. Zwaag | C. Fenger | M. Vlčková | P. Laššuthová | P. Accorsi | L. Giordano | H. Olson | R. S. Møller | W. Fazeli | S. Matricardi | A. Jansen | K. Johannesen | Wen‐Han Tan | P. Zacher | F. Darra | S. Ichikawa | S. Masnada | C. Betzler | M. Nizon | Nancy Eisenhauer | Ahmed Eltokhi | H. Verhelst | M. Nassogne | E. Scalais | Mastrangelo | C. Hoei-Hansen | Jan Benda | M. Koch-Hogrebe | J. Kegele | Tobias Brünger | T. Roser | S. Grønborg | A. Schoonjans | J. Krüger | P. Lakeman | A. V. Harder | D. Tibussek | P. Gélisse | E. Dadali | S. Korostelev | S. Lauxmann | Massimo | Federico | C. Altuzarra | M. Vaccarezza | Jakob Christensen | Karen | Lukas | A. Borovikov | Monisa Wagner | C. Lund | Yuanyuan Liu | Cathrine E. Gjerulfsen | Sonnenberg | Maert Rannap | A. Nils | Koch | Franceschetti | Pia Zacher | Constanze Heine | Judith Kroell-Seger | Karli M Martin | Klein | P. Au | A. Ho | Eva | Brilstra | Sebastian Lebon | N. M. Le | Mette U Schmidt-Petersen | Stephen W Scherer | Chloé | Stutterd | S. Walsh | M. Claudia | Bonardi | A. Vøllo | Roseline Caume | Artém | Sharkov | I. Mishina | Sergey | Kutsev | Müller-Schlüter | Anne | Destrée | Siddharth Srivastava | Loddenkemper | P. Mark | Fitzgerald | M. Perry | Johannes Rebstock | S. Lebon | Cathrine E Gjerulfsen | Rikke S. Møller | Phillis Lakeman | Dennis Lal | Monisa D. Wagner

[1]  Jen Q. Pan,et al.  Biological concepts in human sodium channel epilepsies and their relevance in clinical practice , 2020, Epilepsia.

[2]  S. Antonarakis,et al.  SCN8A heterozygous variants are associated with anoxic‐epileptic seizures , 2020, American journal of medical genetics. Part A.

[3]  W. Gaillard,et al.  A multi-disciplinary clinic for SCN8A-related epilepsy , 2019, Epilepsy Research.

[4]  T. Cummins,et al.  Distinct functional alterations in SCN8A epilepsy mutant channels , 2019, The Journal of physiology.

[5]  Jacy L. Wagnon,et al.  Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy , 2019, Epilepsia.

[6]  S. Julia,et al.  Clinical study of 19 patients with SCN8A‐related epilepsy: Two modes of onset regarding EEG and seizures , 2019, Epilepsia.

[7]  C. Zucca,et al.  Novel epilepsy phenotype associated to a known SCN8A mutation , 2019, Seizure.

[8]  H. Lerche,et al.  Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability , 2019, Brain : a journal of neurology.

[9]  Jacy L. Wagnon,et al.  Prominent role of forebrain excitatory neurons in SCN8A encephalopathy , 2019, Brain : a journal of neurology.

[10]  Michael R. Johnson,et al.  Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals , 2019, bioRxiv.

[11]  H. Lerche,et al.  Relationship of electrophysiological dysfunction and clinical severity in SCN2A‐related epilepsies , 2018, Human mutation.

[12]  I. Scheffer,et al.  The phenotype of SCN8A developmental and epileptic encephalopathy , 2018, Neurology.

[13]  Y. Yanagawa,et al.  Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice , 2018, Communications Biology.

[14]  I. Scheffer,et al.  Early mortality in SCN8A-related epilepsies , 2018, Epilepsy Research.

[15]  Christopher H. Thompson,et al.  The novel sodium channel modulator GS‐458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy , 2018, Epilepsia.

[16]  Jacy L. Wagnon,et al.  Partial loss‐of‐function of sodium channel SCN8A in familial isolated myoclonus , 2018, Human mutation.

[17]  Ryan L. Collins,et al.  An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder , 2018, Nature Genetics.

[18]  Ji Yoon Han,et al.  A Novel Inherited Mutation of SCN8A in a Korean Family with Benign Familial Infantile Epilepsy Using Diagnostic Exome Sequencing. , 2017, Annals of clinical and laboratory science.

[19]  M. Meisler,et al.  Severe bone loss and multiple fractures in SCN8A-related epileptic encephalopathy. , 2017, Bone.

[20]  Liping Wei,et al.  SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures , 2017, BMC Medical Genetics.

[21]  Jacy L. Wagnon,et al.  Loss-of-function variants of SCN8A in intellectual disability without seizures , 2017, Neurology: Genetics.

[22]  L. Lagae,et al.  Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders , 2017, Brain : a journal of neurology.

[23]  Edouard Hirsch,et al.  ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[24]  J. H. Cross,et al.  Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[25]  John R. Huguenard,et al.  Regulation of Thalamic and Cortical Network Synchrony by Scn8a , 2017, Neuron.

[26]  A. Orsini,et al.  Autosomal dominant SCN8A mutation with an unusually mild phenotype. , 2016, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[27]  B. Steinhoff,et al.  Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation , 2016, Annals of neurology.

[28]  D. Valle,et al.  GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene , 2015, Human mutation.

[29]  D. Lindhout,et al.  Erratum to: Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach , 2015, Neurotherapeutics.

[30]  D. Lindhout,et al.  Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach , 2015, Neurotherapeutics.

[31]  Jacy L. Wagnon,et al.  Recurrent and Non-Recurrent Mutations of SCN8A in Epileptic Encephalopathy , 2015, Front. Neurol..

[32]  Allan Bayat,et al.  The incidence of SCN1A‐related Dravet syndrome in Denmark is 1:22,000: A population‐based study from 2004 to 2009 , 2015, Epilepsia.

[33]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[34]  Yuehua Zhang,et al.  SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability , 2015, Epilepsia.

[35]  S. Dib-Hajj,et al.  De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy , 2015, Journal of Medical Genetics.

[36]  G. Carvill,et al.  The phenotypic spectrum of SCN8A encephalopathy , 2015, Neurology.

[37]  M. Kals,et al.  De Novo SCN8A Mutation Identified by Whole-Exome Sequencing in a Boy With Neonatal Epileptic Encephalopathy, Multiple Congenital Anomalies, and Movement Disorders , 2014, Journal of child neurology.

[38]  Stef van Lieshout,et al.  Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy , 2014, Epilepsy Research.

[39]  M. Hammer,et al.  A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy , 2014, Neurobiology of Disease.

[40]  E. Leshinsky‐Silver,et al.  Early onset epileptic encephalopathy caused by de novo SCN8A mutations , 2014, Epilepsia.

[41]  K. Veeramah,et al.  De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. , 2012, American journal of human genetics.

[42]  A. Becker,et al.  Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. , 2010, Brain : a journal of neurology.

[43]  W. Frankel,et al.  Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice , 2009, Human molecular genetics.

[44]  J. Trimmer,et al.  Localization and targeting of voltage-dependent ion channels in mammalian central neurons. , 2008, Physiological reviews.

[45]  Hiroyuki Miyamoto,et al.  Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation , 2007, The Journal of Neuroscience.

[46]  W. Spain,et al.  Erratum: Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy (Nature Neuroscience (2006) 9, (1142-1149)) , 2007 .

[47]  Massimo Mantegazza,et al.  Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy , 2006, Nature Neuroscience.

[48]  M. Meisler,et al.  Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation , 2005, Journal of Medical Genetics.

[49]  A. L. Goldin,et al.  A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel. , 1999, Neuroreport.

[50]  A. L. Goldin,et al.  A Missense Mutation in the Sodium Channel Scn8a Is Responsible for Cerebellar Ataxia in the Mouse Mutant jolting , 1996, The Journal of Neuroscience.

[51]  J. Court,et al.  Physiological and biochemical studies on the cerebellar cortex of the murine mutants “jolting” and “motor end-plate disease” , 1992, Journal of the Neurological Sciences.

[52]  J. Harris,et al.  A CEREBELLAR ABNORMALITY IN THE MOUSE WITH MOTOR END‐PLATE DISEASE , 1985, Neuropathology and applied neurobiology.