Feedforward control design for a four-rotor UAV using direct and indirect methods

To calculate feedforward control strategies by means of dynamic optimization procedures, the alternatives of direct and indirect methods are compared in this paper. The direct optimization approaches that are considered in this paper make use of the Hermite-Simpson method and of the Legendre Pseudospectral method as underlying discretization strategies. Their description is followed by a short introduction to the maximum principle of Pontryagin, i.e., the indirect method. All procedures are employed to compute feedforward control sequences for the flight control of a four-rotor UAV, which is an unstable, nonlinear multi-input multi-output system. The optimization results are compared with respect to their accuracy and applicability.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Holger Voos Entwurf eines Flugreglers für ein vierrotoriges unbemanntes FluggerätControl Systems Design for a Quadrotor UAV , 2009, Autom..

[3]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[4]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[5]  Lucien W. Neustadt,et al.  Optimization: A Theory of Necessary Conditions , 1976 .

[6]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[7]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[8]  H. Michels,et al.  Abscissas and weight coefficients for Lobatto quadrature , 1963 .

[9]  Holger Voos Nonlinear state-dependent Riccati equation control of a quadrotor UAV , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[10]  A. D. Lewis The Maximum Principle of Pontryagin in control and in optimal control , 2006 .

[11]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[12]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[13]  Wei Kang,et al.  Pseudospectral Optimal Control and Its Convergence Theorems , 2008 .

[14]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[15]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[16]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[17]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.