Entropy–Copula in Hydrology and Climatology

AbstractThe entropy theory has been widely applied in hydrology for probability inference based on incomplete information and the principle of maximum entropy. Meanwhile, copulas have been extensively used for multivariate analysis and modeling the dependence structure between hydrologic and climatic variables. The underlying assumption of the principle of maximum entropy is that the entropy variables are mutually independent from each other. The principle of maximum entropy can be combined with the copula concept for describing the probability distribution function of multiple dependent variables and their dependence structure. Recently, efforts have been made to integrate the entropy and copula concepts (hereafter, entropy–copula) in various forms to take advantage of the strengths of both methods. Combining the two concepts provides new insight into the probability inference; however, limited studies have utilized the entropy–copula methods in hydrology and climatology. In this paper, the currently ava...

[1]  Rao S. Govindaraju,et al.  Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas , 2008 .

[2]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[3]  Jan M. H. Hendrickx,et al.  Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales , 2011 .

[4]  E. Foufoula‐Georgiou,et al.  On variational downscaling, fusion, and assimilation of hydrometeorological states: A unified framework via regularization , 2012, 1210.0854.

[5]  G. Venter TAILS OF COPULAS , 2013 .

[6]  N. Brunsell A multiscale information theory approach to assess spatial-temporal variability of daily precipitation , 2010 .

[7]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[8]  Michael A. H. Dempster,et al.  EMPIRICAL COPULAS FOR CDO TRANCHE PRICING USING RELATIVE ENTROPY , 2007 .

[9]  T. Ané,et al.  Dependence Structure and Risk Measure , 2003 .

[10]  A. Aghakouchak,et al.  Evaluation of CMIP5 continental precipitation simulations relative to satellite‐based gauge‐adjusted observations , 2014 .

[11]  Demetris Koutsoyiannis A stochastic disaggregation method for design storm and flood synthesis , 1994 .

[12]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[13]  Amir AghaKouchak,et al.  Seasonal and Regional Biases in CMIP5 Precipitation Simulations , 2013 .

[14]  Jonathan M. Borwein,et al.  Copulas with maximum entropy , 2012, Optim. Lett..

[15]  Francesco Serinaldi Comment on "Multivariate non-normally distributed random variables in climate research – introduction to the copula approach" by C. Schölzel and P. Friederichs, Nonlin. Processes Geophys., 15, 761–772, 2008 , 2009 .

[16]  Phil Howlett,et al.  Matching the grade correlation coefficient using a copula with maximum disorder , 2007 .

[17]  Upmanu Lall,et al.  Modeling multivariable hydrological series: Principal component analysis or independent component analysis? , 2007 .

[18]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[19]  Ximing Wu,et al.  Exponential series estimation of empirical copulas with application to financial returns , 2009 .

[20]  András Bárdossy,et al.  Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula , 2010 .

[21]  H. Joe Multivariate models and dependence concepts , 1998 .

[22]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[23]  Fateh Chebana,et al.  Multivariate quantiles in hydrological frequency analysis , 2011 .

[24]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .

[25]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[26]  Amir AghaKouchak,et al.  Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations , 2014 .

[27]  Jenq-Tzong Shiau,et al.  BIVARIATE FREQUENCY ANALYSIS OF FLOODS USING COPULAS1 , 2006 .

[28]  A. Aghakouchak Extremes in a Changing Climate: Detection, Analysis and Uncertainty , 2013 .

[29]  Ning Zhao,et al.  A copula entropy approach to correlation measurement at the country level , 2011, Appl. Math. Comput..

[30]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[31]  Z. Hao,et al.  Entropy‐copula method for single‐site monthly streamflow simulation , 2012 .

[32]  Jonathan M. Borwein,et al.  Maximum entropy methods for generating simulated rainfall , 2012 .

[33]  Amir AghaKouchak,et al.  Extended contingency table: Performance metrics for satellite observations and climate model simulations , 2013 .

[34]  G. Meehl,et al.  Climate extremes: observations, modeling, and impacts. , 2000, Science.

[35]  C. Piani,et al.  Two dimensional bias correction of temperature and precipitation copulas in climate models , 2012 .

[36]  A. Aghakouchak,et al.  Multivariate Standardized Drought Index: A parametric multi-index model , 2013 .

[37]  N. L. Johnson,et al.  Continuous Multivariate Distributions: Models and Applications , 2005 .

[38]  Vijay P. Singh,et al.  Hydrologic Synthesis Using Entropy Theory: Review , 2011 .

[39]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[40]  C. De Michele,et al.  On the Use of Copulas in Hydrology: Theory and Practice , 2007 .

[41]  Annette Menzel,et al.  Recent and future climate extremes arising from changes to the bivariate distribution of temperature and precipitation in Bavaria, Germany , 2013 .

[42]  J. V. Revadekar,et al.  Global observed changes in daily climate extremes of temperature and precipitation , 2006 .

[43]  A. Mohammad-Djafari,et al.  New copulas obtained by maximizing Tsallis or Rényi entropies , 2012 .

[44]  Wotao Yin,et al.  Copula density estimation by total variation penalized likelihood with linear equality constraints , 2012, Comput. Stat. Data Anal..

[45]  G. Hegerl,et al.  Indices for monitoring changes in extremes based on daily temperature and precipitation data , 2011 .

[46]  F. Serinaldi A multisite daily rainfall generator driven by bivariate copula-based mixed distributions , 2009 .

[47]  András Bárdossy,et al.  Modeling Radar Rainfall Estimation Uncertainties: Random Error Model , 2010 .

[48]  L. Carvalho,et al.  Frequency analysis of extreme events based on precipitation station data over southeastern Brazil , 2013 .

[49]  Joan Torrens,et al.  Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.

[50]  Ali Mohammad-Djafari,et al.  Maximum Entropies Copulas , 2011 .

[51]  Francesco Serinaldi,et al.  Fully Nested 3-Copula: Procedure and Application on Hydrological Data , 2007 .

[52]  Donald H. Burn,et al.  Copula-Based Pooled Frequency Analysis of Droughts in the Canadian Prairies , 2014 .

[53]  Vijay P. Singh,et al.  Single‐site monthly streamflow simulation using entropy theory , 2011 .

[54]  Radko Mesiar,et al.  Discrete Copulas , 2006, IEEE Transactions on Fuzzy Systems.

[55]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[56]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[57]  S. Hagemann,et al.  On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle , 2011 .

[58]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[59]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[60]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[61]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[62]  Ba Chu On the Recovery of the Most Entropic Copulas from Prior Knowledge of Dependence , 2005 .

[63]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[64]  Vijay P. Singh,et al.  Bivariate rainfall frequency distributions using Archimedean copulas , 2007 .

[65]  Alireza Nazemi,et al.  Application of copula modelling to the performance assessment of reconstructed watersheds , 2012, Stochastic Environmental Research and Risk Assessment.

[66]  R. Durrett Probability: Theory and Examples , 1993 .

[67]  A. Favre,et al.  Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data , 2007 .

[68]  L. Mead,et al.  Maximum entropy in the problem of moments , 1984 .

[69]  Taesam Lee,et al.  Serial dependence properties in multivariate streamflow simulation with independent decomposition analysis , 2012 .

[70]  Craig Friedman,et al.  Most Entropic Copulas: General Form, and Calibration to High-Dimensional Data in an Important Special Case , 2010 .

[71]  Jay R. Lund,et al.  Estimated impacts of climate warming on California’s high-elevation hydropower , 2010 .

[72]  J. Stedinger,et al.  Multisite ARMA(1,1) and Disaggregation Models for Annual Streamflow Generation , 1985 .

[73]  Hao Chen,et al.  Nonparametric Copula Density Estimation in Sensor Networks , 2011, 2011 Seventh International Conference on Mobile Ad-hoc and Sensor Networks.

[74]  Amir AghaKouchak,et al.  Changes in concurrent monthly precipitation and temperature extremes , 2013 .

[75]  Vijay P. Singh,et al.  Modeling multisite streamflow dependence with maximum entropy copula , 2013 .

[76]  Yi Qian,et al.  Copula Density Estimation by Total Variation Penalized Likelihood , 2009, Commun. Stat. Simul. Comput..

[77]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[78]  R. Nelsen An Introduction to Copulas , 1998 .

[79]  Amir AghaKouchak,et al.  A Nonparametric Multivariate Multi-Index Drought Monitoring Framework , 2014 .

[80]  Dieter Gerten,et al.  Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models , 2011 .

[81]  Thordis L. Thorarinsdottir,et al.  Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas , 2012, 1202.3956.

[82]  Song-Chun Zhu,et al.  Minimax Entropy Principle and Its Application to Texture Modeling , 1997, Neural Computation.

[83]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[84]  Ali Mohammad-Djafari,et al.  Link between copula and tomography , 2010, Pattern Recognit. Lett..

[85]  Adrianus M. H. Meeuwissen,et al.  Minimally informative distributions with given rank correlation for use in uncertainty analysis , 1997 .

[86]  A. Bárdossy Copula‐based geostatistical models for groundwater quality parameters , 2006 .

[87]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[88]  Ba Chu,et al.  Recovering copulas from limited information and an application to asset allocation , 2011 .

[89]  András Bárdossy,et al.  Copula‐based uncertainty modelling: application to multisensor precipitation estimates , 2010 .

[90]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[91]  Francesco Serinaldi,et al.  Asymmetric copula in multivariate flood frequency analysis , 2006 .

[92]  Jery R. Stedinger,et al.  Disaggregation Procedures for Generating Serially Correlated Flow Vectors , 1984 .

[93]  V. Singh,et al.  THE USE OF ENTROPY IN HYDROLOGY AND WATER RESOURCES , 1997 .