Convex distance functions in 3-space are different

We investigate the bisector systems of convex distance functions in 3-space and show that there is a substantial difference to the Euclidean metric which cannot be observed in 2-space. Namely, more than one sphere can pass through four points in general position. We show that in the L4-metric there exist quadrupels of points that lie on the surface of three L4-spheres, and that this number does not decrease if the four points are disturbed independently within 3-dimensional neighborhoods. Moreover, for each n ≥ 2 we construct a smooth and symmetric convex distance function d and four points that are contained in the surface of exactly n d-spheres. This result implies that there is no general upper bound to the complexity of the Voronoi diagram of four sites based on a convex distance function in 3-space.

[1]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[2]  Rolf Klein,et al.  Combinatorial Properties of Abstract Voronoi Diagrams , 1990, WG.

[3]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[4]  Kurt Mehlhorn,et al.  On the Construction of Abstract Voronoi Diagrams, II , 1990, SIGAL International Symposium on Algorithms.

[5]  Rolf Klein,et al.  Wrapping ellipses around a convex skeleton , 1995, Int. J. Comput. Math..

[6]  Kurt Mehlhorn,et al.  On the Construction of Abstract Voronoi Diagrams , 1990, STACS.

[7]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[8]  Hans-Christoph Im Hof,et al.  Dirichlet regions in manifolds without conjugate points , 1979 .

[9]  Ngoc-Minh Lê,et al.  Convex Distance Functions in 3-Space are Different , 1995, Fundam. Informaticae.

[10]  Chak-Kuen Wong,et al.  Distance problems in computational geometry with fixed orientations , 1985, SCG '85.

[11]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[12]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[13]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[14]  T. Willmore Algebraic Geometry , 1973, Nature.

[15]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[16]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[17]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[18]  Ngoc-Minh Lê,et al.  On Voronoi Diagrams in the L_p-Metric in Higher Dimensions , 1994, STACS.

[19]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[20]  M. Calpena Diagramas de voronoi en caleidoscopios , 1992 .

[21]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[22]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.