Emergent ultrafast phenomena in correlated oxides and heterostructures

The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel nonequilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal d-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence time of the charge excitations. Here, we review and discuss three paradigmatic examples of transient emerging properties that are expected to open new fields of research: i) the creation of nonthermal magnetic states in spin-orbit Mott insulators; ii) the possible exploitation of quantum paths for the transport and collection of charge excitations in TMO-based few-monolayers devices; iii) the transient wave-like behavior of the temperature field in strongly anisotropic TMOs.

[1]  Martin T. Zanni,et al.  Concepts and Methods of 2D Infrared Spectroscopy , 2011 .

[2]  Gang Cao,et al.  Weak ferromagnetism, metal-to-nonmetal transition, and negative differential resistivity in single-crystal Sr 2 IrO 4 , 1998 .

[3]  R. Mirin,et al.  Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors , 2007, Proceedings of the National Academy of Sciences.

[4]  R. Greene,et al.  Charge ordering in the electron-doped superconductor Nd2–xCexCuO4 , 2014, Science.

[5]  S. Feng,et al.  Pseudogap effects on the c-axis charge dynamics in copper oxide materials , 2000, cond-mat/0001260.

[6]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[7]  B. J. Kim,et al.  Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3 , 2015, Nature Physics.

[8]  A. Cavalleri,et al.  Nonlinear phononics as an ultrafast route to lattice control , 2011, 1101.1878.

[9]  Michael Bauer,et al.  Collapse of long-range charge order tracked by time-resolved photoemission at high momenta , 2011, Nature.

[10]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[11]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[12]  Ultrafast spectroscopy of quasiparticle dynamics in cuprate superconductors , 2014, 1406.6207.

[13]  Tim Langen,et al.  Ultracold Atoms Out of Equilibrium , 2014, 1408.6377.

[14]  E. Walker,et al.  Specific heat up to 14 tesla and magnetization of a Bi2Sr2CaCu2O8 single crystal thermodynamics of a 2D superconductor , 1994 .

[15]  D. Mihailovic,et al.  Coherent dynamics of macroscopic electronic order through a symmetry breaking transition , 2010, 1006.1815.

[16]  B. McNeil,et al.  X-ray free-electron lasers , 2010 .

[17]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[18]  S. Mukamel,et al.  Optical multidimensional coherent spectroscopy , 2013 .

[19]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[20]  K. Held,et al.  Oxide heterostructures for efficient solar cells. , 2013, Physical review letters.

[21]  Jan Kunes,et al.  Quantum spin Hall effect in a transition metal oxide Na2IrO3. , 2008, Physical review letters.

[22]  Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. , 2015, Nature materials.

[23]  Jungho Kim,et al.  Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic x-ray scattering: establishing links to cuprate superconductors. , 2012, Physical review letters.

[24]  Da Yu Tzou,et al.  Macro- to Microscale Heat Transfer: The Lagging Behavior , 2014 .

[25]  Thomas A. Lograsso,et al.  Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations , 2013, Nature.

[26]  H. Ehrke,et al.  Quantum interference between charge excitation paths in a solid-state Mott insulator , 2009, 0910.3808.

[27]  Y. Singh,et al.  Antiferromagnetic Mott insulating state in single crystals of the hexagonal lattice material Na2IrO3 , 2010, 1006.0437.

[28]  V. Cataudella,et al.  Quantum dynamics of the Hubbard-Holstein model in equilibrium and nonequilibrium: application to pump-probe phenomena. , 2012, Physical review letters.

[29]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[30]  K. Nasu Photoinduced Phase Transitions , 2004 .

[31]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[32]  A. P. Sorini,et al.  Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered La(1.75)Sr(0.25)NiO(4) nickelate crystals using time-resolved resonant x-ray diffraction. , 2013, Physical review letters.

[33]  Jaejun Yu,et al.  Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. , 2008, Physical review letters.

[34]  Animesh Datta,et al.  Noise-assisted energy transfer in quantum networks and light-harvesting complexes , 2009, 0910.4153.

[35]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[36]  S. Haacke,et al.  Two MHz tunable non collinear optical parametric amplifiers with pulse durations down to 6 fs. , 2014, Optics express.

[37]  J. Mentink,et al.  Ultrafast Quenching of the Exchange Interaction in a Mott Insulator , 2014, 1401.5308.

[38]  Paolo Villoresi,et al.  Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers , 2009 .

[39]  Wang,et al.  Structural and magnetic studies of Sr2IrO4. , 1994, Physical review. B, Condensed matter.

[40]  O. K. Andersen,et al.  Orbital fluctuations in the different phases of LaVO(3) and YVO(3). , 2007, Physical review letters.

[41]  S. Cheong,et al.  Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. , 2012, Physical review letters.

[42]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[43]  S. D. Conte,et al.  Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates , 2015, Nature Physics.

[44]  T. Schmitt,et al.  Intense paramagnon excitations in a large family of high-temperature superconductors , 2011, 1106.2641.

[45]  H. Takagi,et al.  Momentum-resolved electronic excitations in the Mott insulator Sr 2 IrO 4 studied by resonant inelastic x-ray scattering , 2011 .

[46]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[47]  C. Kittel Introduction to solid state physics , 1954 .

[48]  Philipp Kukura,et al.  Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source. , 2014, Optics letters.

[49]  I. Vishik,et al.  Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuO4±δ , 2006, Nature.

[50]  D. Mihailovic,et al.  Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach , 2016, 1601.07204.

[51]  Y. S. Lee,et al.  Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and IR) , 2006, cond-mat/0607026.

[52]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[53]  G. Penco,et al.  Coherent control with a short-wavelength free-electron laser , 2016, Nature Photonics.

[54]  Richard D. Averitt,et al.  Dynamics and Control in Complex Transition Metal Oxides , 2014 .

[55]  S. Lloyd,et al.  Symmetry-enhanced supertransfer of delocalized quantum states , 2010, 1005.2579.

[56]  R. Valentí,et al.  Origin of the insulating state in honeycomb iridates and rhodates , 2013, 1304.2258.

[57]  S. Bals,et al.  Electronically coupled complementary interfaces between perovskite band insulators , 2006, Nature materials.

[58]  E. Fradkin,et al.  Ineluctable complexity , 2012, Nature Physics.

[59]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[60]  M. Berciu,et al.  The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations , 2014, Nature Physics.

[61]  I. McCulloch,et al.  Nonthermal Melting of Néel Order in the Hubbard Model , 2015, 1504.02461.

[62]  M. Murnane,et al.  Phase-matched generation of coherent soft X-rays , 1998, Science.

[63]  K. Balzer,et al.  Ultrafast and reversible control of the exchange interaction in Mott insulators , 2014, Nature Communications.

[64]  F. Parmigiani,et al.  Ab initio thermodynamics calculation of all-optical time-resolved calorimetry of nanosize systems: Evidence of nanosecond decoupling of electron and phonon temperatures , 2009, 0911.2994.

[65]  M. Shikano,et al.  Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3 , 2003 .

[66]  H. S. Jeevan,et al.  Transport and thermal properties of weakly ferromagnetic Sr2IrO4 , 2006 .

[67]  Yue Cao,et al.  Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. , 2016, Nature materials.

[68]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[69]  Jungho Kim,et al.  Excitonic quasiparticles in a spin–orbit Mott insulator , 2014, Nature Communications.

[70]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[71]  Randy A. Bartels,et al.  Generation of Spatially Coherent Light at Extreme Ultraviolet Wavelengths , 2002, Science.

[72]  P. Werner,et al.  Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations , 2014, Scientific Reports.

[73]  Lee,et al.  Motion of a single hole in a quantum antiferromagnet. , 1989, Physical review. B, Condensed matter.

[74]  R. Valentí,et al.  Ab initio analysis of the tight-binding parameters and magnetic interactions in Na2IrO3 , 2013, 1303.2105.

[75]  W. Schlotter,et al.  Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. , 2015, Nature materials.

[76]  P. Werner,et al.  Nonequilibrium dynamical mean-field simulation of inhomogeneous systems , 2013, 1303.4618.

[77]  B. J. Kim,et al.  Observation of a d-wave gap in electron-doped Sr2IrO4 , 2015, Nature Physics.

[78]  D. Mihailovic,et al.  Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy , 2014, Scientific Reports.

[79]  J. Bonca,et al.  Multistage dynamics of the spin-lattice polaron formation , 2014, 1402.6104.

[80]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[81]  S. Sakai,et al.  Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4 , 2009, Science.

[82]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[83]  J. Orenstein,et al.  Ultrafast spectroscopy of quantum materials , 2012 .

[84]  Tadesse A. Assefa,et al.  Disentangling the Electronic and Phononic Glue in a High-Tc Superconductor , 2012, Science.

[85]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[86]  Zettl,et al.  Thermal-conductivity anisotropy of single-crystal Bi2Sr2CaCu2O8. , 1991, Physical review. B, Condensed matter.

[87]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[88]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[89]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[90]  G. Jackeli,et al.  Zigzag magnetic order in the iridium oxide Na2IrO3. , 2013, Physical review letters.

[91]  S. Chi,et al.  Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation of single-crystal Na2IrO3 , 2012, 1202.3995.

[92]  Bradley K. Alpert,et al.  Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop , 2016 .

[93]  Tajima,et al.  Optical spectra of La2-xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane. , 1991, Physical review. B, Condensed matter.

[94]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[95]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[96]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[97]  S. Mukamel,et al.  Energy-transfer and charge-separation pathways in the reaction center of photosystem II revealed by coherent two-dimensional optical spectroscopy. , 2010, The Journal of chemical physics.

[98]  Alfred Leitenstorfer,et al.  Ultrabroadband Er:fiber lasers , 2014 .

[99]  Uchida,et al.  Cu-O network dependence of optical charge-transfer gaps and spin-pair excitations in single-CuO2-layer compounds. , 1990, Physical review. B, Condensed matter.

[100]  D. Basov,et al.  Electrodynamics of high- T c superconductors , 2005 .

[101]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[102]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[103]  C. Giannetti New perspectives in the ultrafast spectroscopy of many-body excitations in correlated materials , 2016, 1606.01702.

[104]  J. Bonca,et al.  Relaxation dynamics of the Holstein polaron. , 2012, Physical review letters.

[105]  A. Nugroho,et al.  Probing orbital fluctuations in RVO3 (R = Y, Gd, or Ce) by ellipsometry , 2012, 1205.5048.

[106]  R. Valentí,et al.  Analysis of the optical conductivity for A 2 IrO 3 (A =Na, Li ) from first principles , 2014, 1410.4243.

[107]  W. Schlotter,et al.  Melting of charge stripes in vibrationally driven La(1.875)Ba(0.125)CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. , 2014, Physical review letters.

[108]  A. Damascelli,et al.  Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. , 2012, Physical review letters.

[109]  N. Gedik,et al.  Confinement-deconfinement transition as an indication of spin-liquid-type behavior in Na(2)IrO(3). , 2014, Physical review letters.

[110]  M. Merkli,et al.  Superradiance Transition in Photosynthetic Light-Harvesting Complexes , 2011, 1111.5443.

[111]  R. Valentí,et al.  Na2IrO3 as a molecular orbital crystal. , 2012, Physical review letters.

[112]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[113]  P. Prelovšek,et al.  Ultrafast charge recombination in a photoexcited Mott-Hubbard insulator. , 2013, Physical review letters.

[114]  J. Cooper,et al.  The condensation energy and pseudogap energy scale of Bi : 2212 from the electronic specific heat , 2000 .