Molecular mechanism of action of metformin: old or new insights?

[1]  B. Viollet,et al.  Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP , 2016 .

[2]  André Scheen,et al.  RECOMMANDATIONS 2012 EN DIABÉTOLOGIE: Prise en charge de l'hyperglycémie dans le diabète de type 2: une approche centrée sur le patient , 2012 .

[3]  G. Rena,et al.  Molecular action and pharmacogenetics of metformin: current understanding of an old drug , 2012 .

[4]  A. Prescott,et al.  Cellular Responses to the Metal-Binding Properties of Metformin , 2012, Diabetes.

[5]  D. Matthews,et al.  Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach , 2012, Diabetes Care.

[6]  B. Viollet,et al.  Defining the Contribution of AMP-activated Protein Kinase (AMPK) and Protein Kinase C (PKC) in Regulation of Glucose Uptake by Metformin in Skeletal Muscle Cells* , 2012, The Journal of Biological Chemistry.

[7]  A. Hofman,et al.  A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts , 2012, Diabetologia.

[8]  D. Hardie,et al.  AMPK: a nutrient and energy sensor that maintains energy homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[9]  Tetsuro Tsujimoto,et al.  Cancer Risk in Diabetic Patients Treated with Metformin: A Systematic Review and Meta-analysis , 2012, PloS one.

[10]  M. J. Charron,et al.  Hypoglycemia, hyperglucagonemia, and fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in pregnancy maintenance. , 2012, American journal of physiology. Endocrinology and metabolism.

[11]  B. Viollet,et al.  Cellular and molecular mechanisms of metformin: an overview. , 2012, Clinical science.

[12]  M. L. Bruin,et al.  Glucose-lowering agents and the patterns of risk for cancer: a study with the General Practice Research Database and secondary care data , 2012, Diabetologia.

[13]  Per Damkier,et al.  The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c , 2011, Pharmacogenetics and genomics.

[14]  G. Sapkota,et al.  The specificities of small molecule inhibitors of the TGFß and BMP pathways. , 2011, Cellular signalling.

[15]  D. Accili,et al.  Hormonal regulation of hepatic glucose production in health and disease. , 2011, Cell metabolism.

[16]  M. Montminy,et al.  CREB and the CRTC co-activators: sensors for hormonal and metabolic signals , 2011, Nature Reviews Molecular Cell Biology.

[17]  C. Freeman,et al.  Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes , 2010, Nature Genetics.

[18]  B. Viollet,et al.  Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. , 2010, The Journal of clinical investigation.

[19]  M. Birnbaum,et al.  An energetic tale of AMPK-independent effects of metformin. , 2010, The Journal of clinical investigation.

[20]  S. Hawley,et al.  Use of Cells Expressing γ Subunit Variants to Identify Diverse Mechanisms of AMPK Activation , 2010, Cell metabolism.

[21]  H. Rodbard,et al.  Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. , 2009, Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists.

[22]  P. Donnan,et al.  New Users of Metformin Are at Low Risk of Incident Cancer , 2009, Diabetes Care.

[23]  A. Morris,et al.  Adherence in patients transferred from immediate release metformin to a sustained release formulation: a population‐based study , 2009, Diabetes, obesity & metabolism.

[24]  M. McCarthy,et al.  Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study , 2009, Diabetes.

[25]  R. Doughty,et al.  A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study , 2009, Diabetologia.

[26]  B. Kemp,et al.  Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. , 2008, Chemistry & biology.

[27]  K. Giacomini,et al.  Effect of Genetic Variation in the Organic Cation Transporter 1, OCT1, on Metformin Pharmacokinetics , 2008, Clinical pharmacology and therapeutics.

[28]  P. Cohen,et al.  The selectivity of protein kinase inhibitors: a further update. , 2007, The Biochemical journal.

[29]  R. Heath,et al.  Defining the Mechanism of Activation of AMP-activated Protein Kinase by the Small Molecule A-769662, a Member of the Thienopyridone Family* , 2007, Journal of Biological Chemistry.

[30]  H. Koepsell,et al.  Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications , 2007, Pharmaceutical Research.

[31]  Shuzhong Zhang,et al.  Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. , 2007, The Journal of clinical investigation.

[32]  D. Hardie,et al.  AMP-activated protein kinase as a drug target. , 2007, Annual review of pharmacology and toxicology.

[33]  Kei Sakamoto,et al.  LKB1-dependent signaling pathways. , 2006, Annual review of biochemistry.

[34]  B. Viollet,et al.  Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. , 2006, Diabetes.

[35]  R. DePinho,et al.  The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin , 2005, Science.

[36]  A. Legrand,et al.  Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. , 2005, Metabolism: clinical and experimental.

[37]  G. Gamble,et al.  Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. , 2005, Diabetes.

[38]  Dario R Alessi,et al.  Metformin and reduced risk of cancer in diabetic patients , 2005, BMJ : British Medical Journal.

[39]  R. Doughty,et al.  Regeneration of the heart in diabetes by selective copper chelation. , 2004, Diabetes.

[40]  M. Roden,et al.  Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? , 2004, Diabetes.

[41]  E. Salpeter,et al.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. , 2003, Archives of internal medicine.

[42]  J. Connell,et al.  Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells* , 2003, Journal of Biological Chemistry.

[43]  J. Holst,et al.  Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Olle Ljunqvist,et al.  Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. , 2002, Diabetes.

[45]  D. de Zeeuw,et al.  The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. , 2002, Journal of internal medicine.

[46]  Miaoli Zhu,et al.  Bis(1,1‐di­methyl­biguanido)copper(II) octahydrate , 2002 .

[47]  Margaret S. Wu,et al.  Role of AMP-activated protein kinase in mechanism of metformin action. , 2001, The Journal of clinical investigation.

[48]  M. Owen,et al.  Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. , 2000, The Biochemical journal.

[49]  M. Rigoulet,et al.  Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I* , 2000, The Journal of Biological Chemistry.

[50]  R. Holman,et al.  Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) , 1998, The Lancet.

[51]  M. Hambidge,et al.  Clinical conditions altering copper metabolism in humans. , 1998, The American journal of clinical nutrition.

[52]  G. Milligan,et al.  Tailoring cAMP-signalling responses through isoform multiplicity. , 1997, Trends in biochemical sciences.

[53]  S. Pugazhenthi,et al.  Effects of metformin on glucose and glucagon regulated gluconeogenesis in cultured normal and diabetic hepatocytes. , 1994, Biochemical pharmacology.

[54]  E. Ferrannini,et al.  Acute Antihyperglycemic Mechanisms of Metformin in NIDDM: Evidence for Suppression of Lipid Oxidation and Hepatic Glucose Production , 1994, Diabetes.

[55]  Lawrence A Leiter,et al.  Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. , 1992, Endocrinology.

[56]  G. Kauffman,et al.  An EPR study of some copper(II) coordination compounds of substituted biguanides. Part IV , 1990 .

[57]  R. K. Ray,et al.  An EPR study of copper(II)-substituted biguanide complexes. Part III , 1990 .

[58]  M. Houslay,et al.  Metformin treatment of lean and obese Zucker rats modulates the ability of glucagon and insulin to regulate hepatocyte adenylate cyclase activity. , 1989, The Journal of endocrinology.

[59]  F. Alengrin,et al.  Inhibitory effects of metformin on insulin and glucagon action in rat hepatocytes involve post-receptor alterations. , 1987, Diabete & metabolisme.

[60]  A. Halestrap,et al.  Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. , 1987, Biochemical Journal.

[61]  C. Bailey,et al.  Effect of metformin on glucose metabolism in mouse soleus muscle. , 1986, Diabete & metabolisme.

[62]  S. Pilkis,et al.  The interaction of fructose 2,6-bisphosphate and AMP with rat hepatic fructose 1,6-bisphosphatase. , 1983, The Journal of biological chemistry.

[63]  M. Erecińska,et al.  Inhibitors of Mitochondrial Function , 1981 .

[64]  M. Eggstein,et al.  Lactic acidosis in biguanide-treated diabetics , 1978, Diabetologia.

[65]  G. Schäfer On the mechanism of action of hypoglycemia-producing biguanides. A reevaluation and a molecular theory. , 1976, Biochemical pharmacology.

[66]  F. Davidoff,et al.  Marked hyperlipidemia and pancreatitis associated with oral contraceptive therapy. , 1973, The New England journal of medicine.

[67]  H. Lardy,et al.  Mode of action of hypoglycemic agents. V. Studies with phenethylbiguanide in isolated perfused rat liver. , 1973, The Journal of biological chemistry.

[68]  F. Davidoff Guanidine derivatives in medicine. , 1973, The New England journal of medicine.

[69]  F. Davidoff,et al.  Calcium-like action of phenethylbiguanide and related compounds: inhibition of pyruvate kinase. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[70]  F. Davidoff Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition. , 1971, The Journal of biological chemistry.

[71]  M. Ellenberg,et al.  The University Group Diabetes Program Study pertaining to phenformin. , 1971, JAMA.

[72]  F. Davidoff Effects of guanidine derivatives on mitochondrial function , 1968, Journal of bioenergetics.

[73]  F. Davidoff Effects of guanidine derivatives on mitochondrial function. I. Phenethylbiguanide inhibition of respiration in mitochondria from guinea pig and rat tissues. , 1968, The Journal of clinical investigation.

[74]  H. Clauser,et al.  Specific Inhibition of Gluconeogenesis by Biguanides , 1967, Nature.

[75]  F. Bischoff,et al.  GUANIDINE STRUCTURE AND HYPOGLYCEMIA , 1929 .

[76]  R. Bodo,et al.  The relation of synthalin to carbohydrate metabolism , 1928, The Journal of physiology.

[77]  E. Hill,et al.  SOME EFFECTS OF SYNTHALIN ON METABOLISM , 1927 .

[78]  M. Nothmann,et al.  über Synthetisch Dargestellte Körper mit Insulinartiger Wirkung Auf den Normalen und Diabetischen Organismus , 1926, Klinische Wochenschrift.

[79]  C. Watanabe STUDIES IN THE METABOLISM CHANGES INDUCED BY ADMINISTRATION OF GUANIDINE BASES I. INFLUENCE OF INJECTED GUANIDINE HYDROCHLORIDE UPON BLOOD SUGAR CONTENT , 1918 .

[80]  M. Christensen,et al.  The alpha-cell as target for type 2 diabetes therapy. , 2011, The review of diabetic studies : RDS.

[81]  F. Ross,et al.  Use of Cells Expressing gamma Subunit Variants to Identify Diverse Mechanisms of AMPK Activation , 2010 .

[82]  B. Zinman,et al.  Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy , 2008, Diabetologia.

[83]  D. Hardie,et al.  AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. , 2005, Cell metabolism.

[84]  E. Salpeter,et al.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. , 2003, The Cochrane database of systematic reviews.

[85]  E. Salpeter,et al.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. , 2002, The Cochrane database of systematic reviews.

[86]  C. Bailey,et al.  Accumulation of metformin by tissues of the normal and diabetic mouse. , 1994, Xenobiotica; the fate of foreign compounds in biological systems.

[87]  G. Schäfer Guanidines and biguanides. , 1980, Pharmacology & therapeutics.

[88]  D. Sen Ultraviolet spectral studies on metal biguanide complexes , 1969 .

[89]  B. Pressman,et al.  The Effects of Guanidine and Alkylguanidines on the Energy Transfer Reactions of Mitochondria , 1963 .

[90]  B. Chance,et al.  Inhibition of electron and energy transfer in mitochondria. II. The site and the mechanism of guanidine action. , 1963, The Journal of biological chemistry.

[91]  B. Chance,et al.  Inhibition of electron and energy transfer in mitochondria. IV. Inhibition of energy-linked diphosphopyridine nucleotide reduction by uncoupling agents. , 1963, The Journal of biological chemistry.