Local Marchenko-Pastur law at the hard edge of sample covariance matrices

Let XN be a N × N matrix whose entries are independent identically distributed complex random variables with mean zero and variance 1N. We study the asymptotic spectral distribution of the eigenvalues of the covariance matrix XN*XN for N → ∞. We prove that the empirical density of eigenvalues in an interval [E, E + η] converges to the Marchenko-Pastur law locally on the optimal scale, Nη/E≫(logN)b, and in any interval up to the hard edge, (logN)bN2≲E≤4−κ, for any κ > 0. As a consequence, we show the complete delocalization of the eigenvectors.

[1]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[2]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[3]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[4]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[5]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[6]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[7]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[8]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[9]  S. Péché,et al.  Bulk universality for Wigner matrices , 2009, 0905.4176.

[10]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[11]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[12]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[13]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[14]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[15]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[16]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[17]  B. Schlein,et al.  Average density of states for Hermitian Wigner matrices , 2010, 1011.5594.

[18]  Jun Yin,et al.  Delocalization and Diffusion Profile for Random Band Matrices , 2012, 1205.5669.

[19]  Ke Wang RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.

[20]  H. Yau,et al.  Local circular law for random matrices , 2012, 1206.1449.

[21]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[22]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[23]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[24]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[25]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[26]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.