VCells: Simple and Efficient Superpixels Using Edge-Weighted Centroidal Voronoi Tessellations

VCells, the proposed Edge-Weighted Centroidal Voronoi Tessellations (EWCVTs)-based algorithm, is used to generate superpixels, i.e., an oversegmentation of an image. For a wide range of images, the new algorithm is capable of generating roughly uniform subregions and nicely preserving local image boundaries. The undersegmentation error is effectively limited in a controllable manner. Moreover, VCells is very efficient with core computational cost at O(K√nc·N) in which K, nc, and N are the number of iterations, superpixels, and pixels, respectively. Extensive qualitative discussions are provided, together with the high-quality segmentation results of VCells on a wide range of complex images. The simplicity and efficiency of our model are demonstrated by complexity analysis, time, and accuracy evaluations.

[1]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[4]  Paria Mehrani,et al.  Superpixels and Supervoxels in an Energy Optimization Framework , 2010, ECCV.

[5]  Jie Wang,et al.  An Edge-Weighted Centroidal Voronoi Tessellation Model for Image Segmentation , 2009, IEEE Transactions on Image Processing.

[6]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[9]  Jie Wang,et al.  Image Segmentation Using Local Variation and Edge-Weighted Centroidal Voronoi Tessellations , 2011, IEEE Transactions on Image Processing.

[10]  Jonathan Warrell,et al.  “Lattice Cut” - Constructing superpixels using layer constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Jie Wang,et al.  Edge-weighted centroidal Voronoi tessellations , 2010 .

[15]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[16]  Wilhelm Burger,et al.  Principles of Digital Image Processing - Fundamental Techniques , 2010, Undergraduate Topics in Computer Science.

[17]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[19]  Qiang Du,et al.  Centroidal Voronoi Tessellation Algorithms for Image Compression, Segmentation, and Multichannel Restoration , 2006, Journal of Mathematical Imaging and Vision.

[20]  Lili Ju CONFORMING CENTROIDAL VORONOI DELAUNAY TRIANGULATION FOR QUALITY MESH GENERATION , 2007 .

[21]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[22]  S. Süsstrunk,et al.  SLIC Superpixels ? , 2010 .

[23]  Camille Couprie,et al.  Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Alejo Hausner,et al.  Simulating decorative mosaics , 2001, SIGGRAPH.

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[27]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[28]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.