Three-Dimensional FeII-[MoIII(CN)7]4- Magnets with Ordering below 65 K and Distinct Topologies Induced by Cation Identity.

Two cyanide-bridged compounds based on the FeII cation and the anisotropic [MoIII(CN)7]4- anion, namely, {Fe2(H2O)5[Mo(CN)7]·5H2O}n (1) and {[NH2(CH3)2]2Fe5(H2O)10[Mo(CN)7]3·8H2O}n (2), have been prepared. Single crystal X-ray analyses revealed that their structures exhibit different three-dimensional topologies as a result of the addition of [NH2(CH3)2]+ during the synthesis of 2. For both 1 and 2, the geometry of the [Mo(CN)7]4- unit is a slightly distorted capped trigonal prism; all FeII centers are hexacoordinate and adopt a distorted octahedral configuration. Compound 1 is a three-nodal 3,4,7-connected net with the point symbol of {4.62}{45.6}{46.612.83}, while compound 2 is a five-nodal 4,4,4,6,7-connected net with the point symbol of {44.62}{45.6}4{46.67.82}{49.611.8}2. Magnetic studies revealed that both compounds exhibit magnetic ordering below 65 K. Apart from the plethora of MnII-[Mo(CN)7]4- compounds documented in the literature, these two FeII-[Mo(CN)7]4- compounds are the only other [Mo(CN)7]4- extended structures to be characterized by single crystal structures to date.

[1]  D. Liao,et al.  Slow magnetic relaxation based on the anisotropic Ising-type magnetic coupling between the MoIII and MnII centers. , 2017, Dalton transactions.

[2]  Xin-Yi Wang,et al.  A One-Dimensional Magnet Based on [Mo(III)(CN)7](4.). , 2016, Inorganic chemistry.

[3]  Li Yang,et al.  Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds , 2016, Scientific Reports.

[4]  V. Mironov Origin of Dissimilar Single-Molecule Magnet Behavior of Three MnII(2)MoIII Complexes Based on [MoIII(CN)7]4- Heptacyanomolybdate: Interplay of MoIII-CN-MnII Anisotropic Exchange Interactions. , 2015, Inorganic chemistry.

[5]  S. Brooker,et al.  A toolbox of building blocks, linkers and crystallisation methods used to generate single-chain magnets , 2015 .

[6]  S. Chorazy,et al.  Magnetic clusters based on octacyanidometallates , 2015 .

[7]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[8]  K. Yoshizawa,et al.  A light-induced spin crossover actuated single-chain magnet , 2013, Nature Communications.

[9]  X. You,et al.  A single-molecule magnet based on heptacyanomolybdate with the highest energy barrier for a cyanide compound. , 2013, Journal of the American Chemical Society.

[10]  Liviu F Chibotaru,et al.  Magnetic relaxation pathways in lanthanide single-molecule magnets. , 2013, Nature chemistry.

[11]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[12]  M. Yamashita,et al.  Single-chain magnets: beyond the Glauber model , 2013 .

[13]  Qinglun Wang,et al.  Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature. , 2012, Angewandte Chemie.

[14]  J. Real,et al.  Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers , 2011 .

[15]  M. Halcrow,et al.  Structure:function relationships in molecular spin-crossover complexes. , 2011, Chemical Society reviews.

[16]  C. Duhayon,et al.  [K2Mn5{Mo(CN)7}3]: an open framework magnet with four Tc conversions orchestrated by guests and thermal history , 2011 .

[17]  K. Dunbar,et al.  Molecular magnetic materials based on 4d and 5d transition metals. , 2011, Chemical Society reviews.

[18]  Kentaroh Suzuki,et al.  Interplay between magnetism and conductivity derived from spin-polarized donor radicals. , 2011, Chemical Society reviews.

[19]  M. Verdaguer,et al.  The fruitful introduction of chirality and control of absolute configurations in molecular magnets. , 2011, Chemical Society reviews.

[20]  J. Long,et al.  Microporous magnets. , 2011, Chemical Society reviews.

[21]  K. Dunbar,et al.  Titelbild: A Docosanuclear {Mo8Mn14} Cluster Based on [Mo(CN)7]4− (Angew. Chem. 30/2010) , 2010 .

[22]  Song Gao,et al.  Strategies towards single-chain magnets , 2010 .

[23]  K. Nakabayashi,et al.  Vanadium(II) heptacyanomolybdate(III)-based magnet exhibiting a high curie temperature of 110 K. , 2010, Inorganic chemistry.

[24]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[25]  P. Comba,et al.  Cyanometalate-bridged oligonuclear transition metal complexes-Possibilities for a rational design of SMMs , 2009 .

[26]  Tomoyuki Matsuda,et al.  Three-dimensional Nickel(II) Heptacyanomolybdate(III)-based Magnet , 2009 .

[27]  M. Shatruk,et al.  Cyanide‐Bridged Complexes of Transition Metals: A Molecular Magnetism Perspective , 2009 .

[28]  A. Vindigni,et al.  Single chain magnets: where to from here? , 2008 .

[29]  J. Sutter,et al.  Nanoporous magnets of chiral and racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with switchable ordering temperatures (TC = 85 K <--> 106 K) driven by H2O sorption (L = N,N-dimethylalaninol). , 2007, Journal of the American Chemical Society.

[30]  Joel S. Miller Magnetically ordered molecule-based materials , 2007 .

[31]  R. Podgajny,et al.  Supramolecular coordination networks based on octacyanometalates: From structure to function , 2006 .

[32]  S. Clima,et al.  Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks. , 2005, The journal of physical chemistry. A.

[33]  K. Hashimoto,et al.  Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate. , 2005, Journal of the American Chemical Society.

[34]  R. Clérac,et al.  [NH4]2Mn3(H2O)4 [Mo(CN)7]2×4H2O: Tuning Dimensionality and Ferrimagnetic Ordering Temperature by Cation Substitution. , 2004 .

[35]  A. Ceulemans,et al.  Mechanism of a strongly anisotropic MoIII-CN-MnII spin-spin coupling in molecular magnets based on the [Mo(CN)(7)](4-) heptacyanometalate: a new strategy for single-molecule magnets with high blocking temperatures. , 2003, Journal of the American Chemical Society.

[36]  F. Tuna,et al.  Substantial increase of the ordering temperature for [MnII/MoIII(CN)7]-based magnets as a function of the 3d ion site geometry: example of two supramolecular materials with Tc = 75 and 106 K. , 2003, Inorganic chemistry.

[37]  R. Clérac,et al.  [N(CH3)4]2[Mn(H2O)]3[Mo(CN)7](2).2H2O: a new high Tc cyano-bridged ferrimagnet based on the [MoIII(CN)7]4- building block and induced by counterion exchange. , 2002, Chemistry.

[38]  R. Clérac,et al.  Determination of the nuclear structure and spin density distribution in the cyano-bridged molecular based magnet K2Mn3(H2O)6[Mo(CN)7]2·6 H2O , 2001 .

[39]  A. Sra,et al.  Hepta/octa cyanomolybdates with Fe2+: influence of the valence state of Mo on the magnetic behavior , 2000 .

[40]  O. Kahn Magnetic anisotropy in molecule–based magnets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  R. Clérac,et al.  Magnetic Transitions in the Cyano-Bridged Bimetallic Ferromagnet Mn(2)(H(2)O)(5)Mo(CN)(7).4.75H(2)O (beta Phase). , 1999, Inorganic chemistry.

[42]  J. Sanchiz,et al.  Ferromagnetic Ordering, Anisotropy, and Spin Reorientation for the Cyano-Bridged Bimetallic Compound Mn2(H2O)5Mo (CN)7×4H2O (α Phase). , 1999 .

[43]  R. Clérac,et al.  Structure, Ferromagnetic Ordering, Anisotropy, and Spin Reorientation for the Two-Dimensional Cyano-Bridged Bimetallic Compound K2Mn3(H2O)6[Mo(CN)7]2·6H2O , 1999 .

[44]  O. Kahn,et al.  Magnetic anisotropy in cyano-bridged bimetallic ferromagnets synthesized from the [Mo(CN)7]4– precursor , 1999 .

[45]  J. Sanchiz,et al.  Ferromagnetic Ordering, Anisotropy, and Spin Reorientation for the Cyano-Bridged Bimetallic Compound Mn2(H2O)5Mo(CN)7·4H2O (α Phase) , 1998 .

[46]  J. Sanchiz,et al.  Crystal structure, ferromagnetic ordering and magnetic anisotropy for two cyano-bridged bimetallic compounds of formula Mn2(H2O)5Mo(CN)7·nH2O , 1998 .

[47]  K. Hashimoto,et al.  Electrochemically Tunable Magnetic Phase Transition in a High-Tc Chromium Cyanide Thin Film , 1996, Science.

[48]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[49]  G. Girolami,et al.  High-Temperature Molecular Magnets Based on Cyanovanadate Building Blocks: Spontaneous Magnetization at 230 K , 1995, Science.

[50]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .

[51]  R. C. Young A COMPLEX CYANIDE OF TRIVALENT MOLYBDENUM , 1932 .