A BiCMOS W-Band 2×2 Focal-Plane Array With On-Chip Antenna

This paper presents a W-band 2 × 2 focal-plane array (FPA) for passive millimeter-wave imaging in a standard 0.18 μm SiGe BiCMOS process (fT/fmax = 200/180 GHz). The FPA incorporates four Dicke-type receivers representing four imaging pixels. Each receiver employs the direct-conversion architecture consisting of an on-chip slot folded dipole antenna, an SPDT switch, a low noise amplifier, a single-balanced mixer, an injection-locked frequency tripler (ILFT), an IF variable gain amplifier, a power detector, an active bandpass filter and a synchronous demodulator. The LO signal is generated by a shared Ka-band PLL and distributed symmetrically to four local ILFTs. The measured LO phase noise is -93 dBc/Hz at 1 MHz offset from the 96 GHz carrier. This imaging receiver (without antenna) achieves a measured average responsivity and noise equivalent power of 285 MV/W and 8.1 fW/Hz1/2, respectively, across the 86-106 GHz bandwidth, which results a calculated NETD of 0.48 K with a 30 ms integration time. The system NETD increases to 3 K with on-chip antenna due to its low efficiency at W-band. MMW images have been generated in transmission mode. This work demonstrates the highest integration level of any silicon-based systems in the 94 GHz imaging band.

[1]  M. Bayer,et al.  Cell based fully integrated CMOS frequency synthesizers , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[2]  Janusz Grzyb,et al.  Lens-integrated THz imaging arrays in 65nm CMOS technologies , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[3]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.

[4]  Y. J. Yoon,et al.  Passive Millimeter-Wave Imaging Module With Preamplified Zero-Bias Detection , 2008, IEEE Transactions on Microwave Theory and Techniques.

[5]  Zhiming Chen,et al.  An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[6]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[7]  Qun Jane Gu,et al.  A CMOS fully differential W-band passive imager with <2 K NETD , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[9]  Ullrich R. Pfeiffer,et al.  Terahertz imaging with CMOS/BiCMOS process technologies , 2010, 2010 Proceedings of ESSCIRC.

[10]  J.R. Long,et al.  A 56–65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[11]  Dow-Chih Niu,et al.  A 60GHz transmitter with integrated antenna in 0.18/spl mu/m SiGe BiCMOS technology , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[12]  E. M. Cherry,et al.  The Design of Wide-Band Transistor Feedback Amplifiers , 1963 .

[13]  Niels Skou,et al.  Microwave Radiometer Systems: Design and Analysis , 1989 .

[14]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[15]  Gabriel M. Rebeiz,et al.  A Low-Loss 50–70 GHz SPDT Switch in 90 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[16]  D. Rutledge,et al.  INTEGRATED-CIRCUIT ANTENNAS. , 1983 .

[17]  Alvydas Lisauskas,et al.  A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[18]  Chung-Yu Wu,et al.  Design and Analysis of CMOS Subharmonic Injection-Locked Frequency Triplers , 2008, IEEE Transactions on Microwave Theory and Techniques.

[19]  H. Tsai,et al.  Planar amplifier array with improved bandwidth using folded-slots , 1994, IEEE Microwave and Guided Wave Letters.

[20]  Richard Lai,et al.  Advanced MMIC for Passive Millimeter and Submillimeter Wave Imaging , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[21]  Vipul Jain,et al.  Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver , 2011, IEEE Journal of Solid-State Circuits.

[22]  Sean Duffy,et al.  SiGe IC- based mm-wave imager , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[23]  M. Prigent,et al.  Phase noise in oscillators - Leeson formula revisited , 2003 .

[24]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[25]  Payam Heydari,et al.  A fully integrated 96GHz 2×2 focal-plane array with On-Chip antenna , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[26]  Sorin P. Voinigescu,et al.  Design of a Dual W- and D-Band PLL , 2011, IEEE Journal of Solid-State Circuits.

[27]  S. Safavi-Naeini,et al.  On-chip antennas for 24, 60, and 77GHz single package transceivers on low resistivity silicon substrate , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[28]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[29]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[30]  Duixian Liu,et al.  Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications , 2009, IEEE Transactions on Antennas and Propagation.

[31]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[32]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical dielectric lenses , 1992 .

[33]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[34]  Gabriel M. Rebeiz,et al.  Single and double folded-slot antennas on semi-infinite substrates , 1995 .

[35]  Ali M. Niknejad,et al.  A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging , 2010, IEEE Journal of Solid-State Circuits.

[36]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[37]  Zhiming Chen,et al.  W-band frequency synthesis using a Ka-band PLL and two different frequency triplers , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[38]  Philip W. Mcentarfer,et al.  Cell-based fully integrated CMOS frequency synthesizers , 1993 .

[39]  Ruonan Han,et al.  280-GHz schottky diode detector in 130-nm digital CMOS , 2011, IEEE Custom Integrated Circuits Conference 2010.

[40]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[41]  Sorin P. Voinigescu,et al.  A scalable high frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1996, Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting.