Static and transient response of rectangular plates

Abstract Static and transient analysis of composite plates is presented using a recently proposed shear deformation theory. The dynamic response is obtained by employing the numerical time integration scheme due to Newmark. The results obtained by using the classical plate theory (CPT) and the Mindlintype shear deformation theory (SDT) are compared with those obtained by using the proposed theory. The comparison studies reveal that the linear stress distribution, as assumed in CPT and SDT, differs considerably from the predicted nonlinear distribution of the proposed theory.

[1]  James Martin Whitney,et al.  Theory of laminated plates , 1970 .

[2]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[3]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[4]  S. Srinivas,et al.  A refined analysis of composite laminates , 1973 .

[5]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[6]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[7]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[8]  Vladimír Panc,et al.  Theories of elastic plates , 1975 .

[9]  S. Srinivas,et al.  An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates , 1970 .

[10]  J. N. Reddy,et al.  Dynamic (transient) analysis of layered anisotropic composite‐material plates , 1983 .

[11]  E. Reissner,et al.  On transverse bending of plates, including the effect of transverse shear deformation☆ , 1975 .

[12]  N. J. Pagano,et al.  Stress fields in composite laminates , 1978 .

[13]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[14]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[15]  C. Sun,et al.  A higher order theory for extensional motion of laminated composites , 1973 .

[16]  S. Srinivas,et al.  Flexure of Simply Supported Thick Homogeneous and Laminated Rectangular Plates , 1969 .

[17]  N. J. Pagano,et al.  Global-local laminate variational model , 1983 .

[18]  E. Reissner,et al.  Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates , 1961 .

[19]  L. K. Stevens,et al.  A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .

[20]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[21]  A. Rao,et al.  Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates , 1970 .

[22]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[23]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[24]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[25]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[26]  Stanley B. Dong,et al.  On the Theory of Laminated Anisotropic Shells and Plates , 1962 .

[27]  A. W. Leissa,et al.  Analysis of Heterogeneous Anisotropic Plates , 1969 .

[28]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[29]  E. Reissner,et al.  A Twelvth Order Theory of Transverse Bending of Transversely Isotropic Plates , 1983 .

[30]  J. N. Reddy,et al.  On the Solutions to Forced Motions of Rectangular Composite Plates , 1982 .

[31]  Tarun Kant,et al.  Numerical analysis of thick plates , 1982 .

[32]  R. B. Nelson,et al.  A Refined Theory for Laminated Orthotropic Plates , 1974 .