The probability of neurotransmitter release: variability and feedback control at single synapses

Information transfer at chemical synapses occurs when vesicles fuse with the plasma membrane and release neurotransmitter. This process is stochastic and its likelihood of occurrence is a crucial factor in the regulation of signal propagation in neuronal networks. The reliability of neurotransmitter release can be highly variable: experimental data from electrophysiological, molecular and imaging studies have demonstrated that synaptic terminals can individually set their neurotransmitter release probability dynamically through local feedback regulation. This local tuning of transmission has important implications for current models of single-neuron computation.

[1]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[2]  B. Katz Nerve, Muscle and Synapse , 1966 .

[3]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[4]  George D. Bittner,et al.  Differentiation of Nerve Terminals in the Crayfish Opener Muscle and Its Functional Significance , 1968, The Journal of general physiology.

[5]  R. Llinás,et al.  Functional characterization of neuronal circuitry of frog cerebellar cortex. , 1969, Journal of neurophysiology.

[6]  G. Bittner,et al.  Matching of excitatory and inhibitory inputs to crustacean muscle fibers. , 1971, Journal of neurophysiology.

[7]  I. Parnas,et al.  Differential block at high frequency of branches of a single axon innervating two muscles. , 1972, Journal of neurophysiology.

[8]  E. Frank Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve , 1973, The Journal of physiology.

[9]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[10]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[11]  J. Nicholls,et al.  Different properties of synapses between a single sensory neurone and two different motor cells in the leech C.N.S , 1974, The Journal of physiology.

[12]  H Korn,et al.  Fluctuating responses at a central synapse: n of binomial fit predicts number of stained presynaptic boutons. , 1981, Science.

[13]  A. G. Brown,et al.  Direct observations on the contacts made between Ia afferent fibres and alpha‐motoneurones in the cat's lumbosacral spinal cord. , 1981, The Journal of physiology.

[14]  J. Jack,et al.  The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. , 1981, The Journal of physiology.

[15]  H Korn,et al.  Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n. , 1982, Journal of neurophysiology.

[16]  B. Walmsley,et al.  Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. , 1983, The Journal of physiology.

[17]  A. I. Shapovalov,et al.  Relation between structural and release parameters at the frog sensory‐motor synapse. , 1984, The Journal of physiology.

[18]  B. Walmsley,et al.  Synaptic input from identified muscle afferents to neurones of the dorsal spinocerebellar tract in the cat. , 1984, The Journal of physiology.

[19]  M. Bennett,et al.  The probability of quantal secretion along visualized terminal branches at amphibian (Bufo marinus) neuromuscular synapses. , 1986, The Journal of physiology.

[20]  R. Robitaille,et al.  Non-uniform release at the frog neuromuscular junction: evidence of morphological and physiological plasticity , 1987, Brain Research Reviews.

[21]  R. Harvey,et al.  Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat , 1988, The Journal of comparative neurology.

[22]  B. Walmsley,et al.  Nonuniform release probabilities underlie quantal synaptic transmission at a mammalian excitatory central synapse. , 1988, Journal of neurophysiology.

[23]  H. Clamann,et al.  Variance analysis of excitatory postsynaptic potentials in cat spinal motoneurons during posttetanic potentiation. , 1989, Journal of neurophysiology.

[24]  L. Mendell,et al.  Modulation of synaptic transmission at Ia-afferent fiber connections on motoneurons during high-frequency stimulation: role of postsynaptic target. , 1991, Journal of neurophysiology.

[25]  R. Robitaille,et al.  Non-uniform responses to Ca2+ along the frog neuromuscular junction: Effects on the probability of spontaneous and evoked transmitter release , 1991, Neuroscience.

[26]  G Laurent,et al.  Single local interneurons in the locust make central synapses with different properties of transmitter release on distinct postsynaptic neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[28]  P. Katz,et al.  Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  G. Davis,et al.  A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  K M Harris,et al.  Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1 , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Aaron D. Wyner,et al.  Reliable Circuits Using Less Reliable Relays , 1993 .

[32]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[33]  Christian Rosenmund,et al.  Nonuniform probability of glutamate release at a hippocampal synapse. , 1993, Science.

[34]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[35]  C. Stevens,et al.  Changes in reliability of synaptic function as a mechanism for plasticity , 1994, Nature.

[36]  L. Brodin,et al.  The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. , 1994, Journal of neurophysiology.

[37]  Charles F. Stevens Neuronal Communication: Cooperativity of unreliable neurons , 1994, Current Biology.

[38]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[39]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[40]  H. Reuter,et al.  Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers , 1995, Neuron.

[41]  C. Zorumski,et al.  Paired‐pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. , 1995, The Journal of physiology.

[42]  B. Walmsley,et al.  Counting quanta: Direct measurements of transmitter release at a central synapse , 1995, Neuron.

[43]  J. Deuchars,et al.  Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: Paired intracellular recordings with biocytin filling , 1995, Neuroscience.

[44]  C. C. Harrington,et al.  Quantal release at visualized terminals of a crayfish motor axon: Intraterminal and regional differences , 1996, The Journal of comparative neurology.

[45]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[46]  Anthony Zador,et al.  Synaptic transmission: Noisy synapses and noisy neurons , 1996, Current Biology.

[47]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[48]  P. Somogyi,et al.  Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone , 1996, Nature.

[49]  C. Goodman,et al.  Homeostasis of Synaptic Transmission in Drosophilawith Genetically Altered Nerve Terminal Morphology , 1996, The Journal of Neuroscience.

[50]  J Deuchars,et al.  Neocortical local synaptic circuitry revealed with dual intracellular recordings and biocytin-filling , 1996, Journal of Physiology-Paris.

[51]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[52]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[53]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J J Jack,et al.  Quantal analysis of excitatory synapses in rat hippocampal CA1 In Vitro during low‐frequency depression , 1997, The Journal of physiology.

[55]  T. Schikorski,et al.  Quantitative Ultrastructural Analysis of Hippocampal Excitatory Synapses Materials and Methods Terminology Fixation and Embedding , 2022 .

[56]  C. Goodman,et al.  Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release , 1997, Neuron.

[57]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[58]  G. Fischbach,et al.  Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. , 1997, Science.

[59]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[60]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[61]  J. Bekkers,et al.  Nonuniform Distribution of Ca2+ Channel Subtypes on Presynaptic Terminals of Excitatory Synapses in Hippocampal Cultures , 1997, The Journal of Neuroscience.

[62]  R. Silver,et al.  Locus of frequency‐dependent depression identified with multiple‐probability fluctuation analysis at rat climbing fibre‐Purkinje cell synapses , 1998, The Journal of physiology.

[63]  K. Tóth,et al.  Target-specific expression of presynaptic mossy fiber plasticity. , 1998, Science.

[64]  Alain Marty,et al.  Multivesicular Release at Single Functional Synaptic Sites in Cerebellar Stellate and Basket Cells , 1998, The Journal of Neuroscience.

[65]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[66]  B. Gähwiler,et al.  Target cell-specific modulation of transmitter release at terminals from a single axon. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[67]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  C. Goodman,et al.  Synapse-specific control of synaptic efficacy at the terminals of a single neuron , 1998, Nature.

[69]  A. Zador Impact of synaptic unreliability on the information transmitted by spiking neurons. , 1998, Journal of neurophysiology.

[70]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[71]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[72]  B Sakmann,et al.  Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  Wolfgang Maass,et al.  Dynamic Stochastic Synapses as Computational Units , 1997, Neural Computation.

[74]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[75]  K. Martin,et al.  Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. , 1999, Cerebral cortex.

[76]  B Sakmann,et al.  Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex , 2000, The Journal of physiology.

[77]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[78]  George Kunos,et al.  Presynaptic Specificity of Endocannabinoid Signaling in the Hippocampus , 2001, Neuron.

[79]  R. Nicoll,et al.  Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses , 2001, Nature.

[80]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[81]  Christof Koch,et al.  Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis , 2001, Neural Computation.

[82]  A. Craig,et al.  Molecular heterogeneity of central synapses: afferent and target regulation , 2001, Nature Neuroscience.

[83]  P. De Camilli,et al.  Chronic Blockade of Glutamate Receptors Enhances Presynaptic Release and Downregulates the Interaction between Synaptophysin-Synaptobrevin–Vesicle-Associated Membrane Protein 2 , 2001, The Journal of Neuroscience.

[84]  Y. Sahara,et al.  Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse , 2001, The Journal of physiology.

[85]  A. C. Meyer,et al.  Estimation of Quantal Size and Number of Functional Active Zones at the Calyx of Held Synapse by Nonstationary EPSC Variance Analysis , 2001, The Journal of Neuroscience.

[86]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  G. Davis,et al.  Homeostatic Control of Presynaptic Release Is Triggered by Postsynaptic Membrane Depolarization , 2001, Neuron.

[88]  Steven A. Siegelbaum,et al.  Visualization of changes in presynaptic function during long-term synaptic plasticity , 2001, Nature Neuroscience.

[89]  L. Ballerini,et al.  Homeostatic plasticity induced by chronic block of AMPA/kainate receptors modulates the generation of rhythmic bursting in rat spinal cord organotypic cultures , 2001, The European journal of neuroscience.

[90]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[91]  Jack Waters,et al.  Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses , 2002, The Journal of physiology.

[92]  B. Alger Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids , 2002, Progress in Neurobiology.

[93]  D. Lovinger,et al.  Postsynaptic endocannabinoid release is critical to long-term depression in the striatum , 2002, Nature Neuroscience.

[94]  E. Neher,et al.  Estimation of quantal parameters at the calyx of Held synapse , 2002, Neuroscience Research.

[95]  David Robbe,et al.  Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  C. McBain,et al.  Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses , 2002, Neuron.

[97]  William B Levy,et al.  Energy-Efficient Neuronal Computation via Quantal Synaptic Failures , 2002, The Journal of Neuroscience.

[98]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[99]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[100]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[101]  R. Tsien,et al.  α- and βCaMKII Inverse Regulation by Neuronal Activity and Opposing Effects on Synaptic Strength , 2002, Neuron.

[102]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[103]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[104]  R. Balice-Gordon,et al.  Activity-dependent elimination of neuromuscular synapses , 2003, Journal of neurocytology.

[105]  T. Bliss,et al.  Optical Quantal Analysis Reveals a Presynaptic Component of LTP at Hippocampal Schaffer-Associational Synapses , 2003, Neuron.

[106]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[107]  C. Stevens,et al.  Three modes of synaptic vesicular recycling revealed by single-vesicle imaging , 2003, Nature.

[108]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[109]  B. Sakmann,et al.  Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. , 2003, The Journal of physiology.

[110]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[111]  C. Goodman,et al.  Retrograde Control of Synaptic Transmission by Postsynaptic CaMKII at the Drosophila Neuromuscular Junction , 2003, Neuron.

[112]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[113]  R. Tsien,et al.  Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[114]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[115]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[116]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[117]  Alex M. Thomson,et al.  Presynaptic Frequency- and Pattern-Dependent Filtering , 2003, Journal of Computational Neuroscience.

[118]  Bing Li,et al.  Enhancement of Synaptic Plasticity through Chronically Reduced Ca2+ Flux during Uncorrelated Activity , 2004, Neuron.

[119]  Mark S. Goldman,et al.  Enhancement of Information Transmission Efficiency by Synaptic Failures , 2004, Neural Computation.

[120]  Zev Balsen,et al.  Sensory Neuron Signaling to the Brain: Properties of Transmitter Release from Olfactory Nerve Terminals , 2004, The Journal of Neuroscience.

[121]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[122]  Dietmar Schmitz,et al.  Synaptic plasticity at hippocampal mossy fibre synapses , 2005, Nature Reviews Neuroscience.

[123]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[124]  D. Attwell,et al.  Neuroenergetics and the kinetic design of excitatory synapses , 2005, Nature Reviews Neuroscience.

[125]  L. Dobrunz,et al.  Mechanisms of target‐cell specific short‐term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats , 2005, The Journal of physiology.

[126]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[127]  E. Neher,et al.  Presynaptic calcium and control of vesicle fusion , 2005, Current Opinion in Neurobiology.

[128]  Wade G. Regehr,et al.  Endocannabinoids Control the Induction of Cerebellar LTD , 2005, Neuron.

[129]  Vivien Chevaleyre,et al.  Endocannabinoid-mediated synaptic plasticity in the CNS. , 2006, Annual review of neuroscience.

[130]  S. Raghavachari,et al.  A Unified Model of the Presynaptic and Postsynaptic Changes During LTP at CA1 Synapses , 2006, Science's STKE.

[131]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[132]  Z. Nusser,et al.  Release Probability-Dependent Scaling of the Postsynaptic Responses at Single Hippocampal GABAergic Synapses , 2006, The Journal of Neuroscience.

[133]  Jenny C A Read,et al.  Extracellular Calcium Regulates Postsynaptic Efficacy through Group 1 Metabotropic Glutamate Receptors , 2006, The Journal of Neuroscience.

[134]  C. A. Frank,et al.  Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis , 2006, Neuron.

[135]  Leon Lagnado,et al.  Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses , 2006, Neuron.

[136]  T. A. Ryan,et al.  The efficiency of the synaptic vesicle cycle at central nervous system synapses. , 2006, Trends in cell biology.

[137]  Idan Segev,et al.  The interplay between homeostatic synaptic plasticity and functional dendritic compartments. , 2006, Journal of neurophysiology.

[138]  R. Malenka,et al.  Synaptic scaling mediated by glial TNF-α , 2006, Nature.

[139]  Michael F Walsh,et al.  Temporal regulation of the expression locus of homeostatic plasticity. , 2006, Journal of neurophysiology.

[140]  R. Silver,et al.  Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse , 2006, Nature.

[141]  Kevin Staras,et al.  Constitutive sharing of recycling synaptic vesicles between presynaptic boutons , 2006, Nature Neuroscience.

[142]  P. Stanton,et al.  BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses , 2006, The Journal of physiology.

[143]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[144]  Wade G Regehr,et al.  Reliability and Heterogeneity of Calcium Signaling at Single Presynaptic Boutons of Cerebellar Granule Cells , 2007, The Journal of Neuroscience.

[145]  K. Fox,et al.  Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. , 2007, Journal of neurophysiology.

[146]  Liming He,et al.  The debate on the kiss-and-run fusion at synapses , 2007, Trends in Neurosciences.

[147]  T. A. Ryan,et al.  Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode , 2007, Proceedings of the National Academy of Sciences.

[148]  Alex M Thomson,et al.  Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex , 2007, Proceedings of the National Academy of Sciences.

[149]  G. Davis,et al.  The BMP Ligand Gbb Gates the Expression of Synaptic Homeostasis Independent of Synaptic Growth Control , 2007, Neuron.

[150]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[151]  K. Moulder,et al.  Vesicle Pool Heterogeneity at Hippocampal Glutamate and GABA Synapses , 2007, The Journal of Neuroscience.

[152]  W. Regehr,et al.  Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity , 2007, Neuron.

[153]  Kevin Staras,et al.  Share and share alike: trading of presynaptic elements between central synapses , 2007, Trends in Neurosciences.

[154]  D. James Surmeier,et al.  Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties , 2008, The Journal of Neuroscience.

[155]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[156]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[157]  C. McBain,et al.  Target‐cell‐dependent plasticity within the mossy fibre–CA3 circuit reveals compartmentalized regulation of presynaptic function at divergent release sites , 2008, The Journal of physiology.

[158]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[159]  D. Feldman,et al.  Synapse-Specific Expression of Functional Presynaptic NMDA Receptors in Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[160]  W. Catterall,et al.  Calcium Channel Regulation and Presynaptic Plasticity , 2008, Neuron.

[161]  T. Branco,et al.  Local Dendritic Activity Sets Release Probability at Hippocampal Synapses , 2008, Neuron.

[162]  C. A. Frank,et al.  A Presynaptic Homeostatic Signaling System Composed of the Eph Receptor, Ephexin, Cdc42, and CaV2.1 Calcium Channels , 2009, Neuron.

[163]  R. Tsien,et al.  The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles , 2009, Science.