Linear minimum-mean-square error estimation of Markovian jump linear systems with Stochastic coefficient matrices

This study presents the state estimation problem of discrete-time Markovian jump linear systems with stochastic coefficient matrices which is motivated by the idea of establishing the general filter framework of the joint state estimation and data association in clutters for tracking the manoeuvering target. According to the orthogonality principle, the linear minimum-mean-square error estimator for this system (abbreviated as LMSCE estimator) is derived recursively and sufficient conditions are given for the stability of the LMSCE estimator. The simulation about tracking the manoeuvering target in clutters shows that the LMSCE estimator obtains much more accurate estimate than the well-known interacting multiple model probabilistic data association filter.

[1]  Yingting Luo,et al.  Novel Data Association Algorithm Based on Integrated Random Coefficient Matrices Kalman Filtering , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[2]  X. Rong Li,et al.  Best Model Augmentation for Variable-Structure Multiple-Model Estimation , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Oswaldo Luiz V. Costa,et al.  Linear minimum mean square filter for discrete-time linear systems with Markov jumps and multiplicative noises , 2011, Autom..

[4]  I. Bilik,et al.  Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Y. Bar-Shalom,et al.  The probabilistic data association filter , 2009, IEEE Control Systems.

[6]  Liping Pang,et al.  A novel interacting multiple model algorithm , 2009, Signal Process..

[7]  X. Rong Li,et al.  Variable-Structure Multiple-Model Approach to Fault Detection, Identification, and Estimation , 2008, IEEE Transactions on Control Systems Technology.

[8]  João Yoshiyuki Ishihara,et al.  Information filtering and array algorithms for discrete-time Markovian jump linear systems , 2007, 2007 American Control Conference.

[9]  João Yoshiyuki Ishihara,et al.  Array Algorithm for Filtering of Discrete-Time Markovian Jump Linear Systems , 2007, IEEE Transactions on Automatic Control.

[10]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[11]  X. R. Li,et al.  Online Bayesian estimation of transition probabilities for Markovian jump systems , 2004, IEEE Transactions on Signal Processing.

[12]  Oswaldo Luiz V. Costa,et al.  Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems , 2002, IEEE Trans. Autom. Control..

[13]  Vikram Krishnamurthy,et al.  An improvement to the interacting multiple model (IMM) algorithm , 2001, IEEE Trans. Signal Process..

[14]  Krishna R. Pattipati,et al.  Ground target tracking with variable structure IMM estimator , 2000, IEEE Trans. Aerosp. Electron. Syst..

[15]  Y. Bar-Shalom,et al.  Multiple-model estimation with variable structure , 1996, IEEE Trans. Autom. Control..

[16]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[17]  O. Costa Linear minimum mean square error estimation for discrete-time Markovian jump linear systems , 1994, IEEE Trans. Autom. Control..

[18]  M. Fragoso,et al.  Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters , 1993 .

[19]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[20]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[21]  Willem L. De Koning,et al.  Optimal estimation of linear discrete-time systems with stochastic parameters , 1984, at - Automatisierungstechnik.

[22]  Michael Athans,et al.  The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method--Part I: Equilibrium flight , 1977 .