Effects of Communication Delay and Kinematic Variation in Vehicle Platooning

Effects of Communication Delay and Kinematic Variation in Vehicle Platooning

[1]  D.E. Olson,et al.  Model-follower longitudinal control for automated guideway transit vehicles , 1979, IEEE Transactions on Vehicular Technology.

[2]  Janne Riihijarvi,et al.  Performance evaluation of IEEE 1609 WAVE and IEEE 802.11p for vehicular communications , 2010, 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN).

[3]  Ingrid Moerman,et al.  Approximation of the IEEE 802.11p standard using commercial off-the-shelf IEEE 802.11a hardware , 2011, 2011 11th International Conference on ITS Telecommunications.

[4]  A. J. Pue,et al.  Implementation trade-offs for a short-headway vehicle-follower automated transit system , 1979, IEEE Transactions on Vehicular Technology.

[5]  A. Bohm,et al.  Position-Based Data Traffic Prioritization in Safety-Critical, Real-Time Vehicle-to-Infrastructure Communication , 2009, 2009 IEEE International Conference on Communications Workshops.

[6]  Yang Bin,et al.  Longitudinal acceleration tracking control of vehicular stop-and-go cruise control system , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[7]  Rajesh Rajamani,et al.  Vehicle dynamics and control , 2005 .

[8]  Kil-To Chong,et al.  A Lyapunov function approach to longitudinal control of vehicles in a platoon , 2001, IEEE Trans. Veh. Technol..

[9]  Urbano Nunes,et al.  Platooning of autonomous vehicles with intervehicle communications in SUMO traffic simulator , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[10]  Spencer Scott Jackson Safety Aware Platooning of Automated Electric Transport Vehicles , 2013 .

[11]  Yang Xiao,et al.  Throughput and delay limits of IEEE 802.11 , 2002, IEEE Communications Letters.

[12]  P. Besnier,et al.  Physical layer performance analysis of V2V communications in high velocity context , 2009, 2009 9th International Conference on Intelligent Transport Systems Telecommunications, (ITST).

[13]  Dong-Ho Cho,et al.  Downlink Resource Allocation Scheme for Smart Antenna Based V2V2I Communication System , 2011, 2011 IEEE Vehicular Technology Conference (VTC Fall).

[14]  Elie Sfeir,et al.  Performance Evaluation of , 2005 .

[15]  Andrea Goldsmith,et al.  Effects of communication delay on string stability in vehicle platoons , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[16]  S. Mammar,et al.  Experimental vehicle longitudinal control using second order sliding modes , 2003, Proceedings of the 2003 American Control Conference, 2003..

[17]  Urbano Nunes,et al.  Platooning With IVC-Enabled Autonomous Vehicles: Strategies to Mitigate Communication Delays, Improve Safety and Traffic Flow , 2012, IEEE Transactions on Intelligent Transportation Systems.

[18]  J. K. Hedrick,et al.  Vehicle Modelling and Control for Automated Highway Systems , 1990, 1990 American Control Conference.

[19]  Nick McKeown,et al.  Automated vehicle control developments in the PATH program , 1991 .

[20]  Max Donath,et al.  American Control Conference , 1993 .

[21]  Wei-Bin Zhang,et al.  Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons , 2000, IEEE Trans. Control. Syst. Technol..

[22]  G. Dimitrakopoulos,et al.  Intelligent Transportation Systems , 2010, IEEE Vehicular Technology Magazine.

[23]  AVCS Platooning,et al.  Vehicle-to-Vehicle Communications For AVCS Platooning , 1996 .

[24]  Guillermo Acosta-Marum,et al.  Wave: A tutorial , 2009, IEEE Communications Magazine.

[25]  Timo Sukuvaara,et al.  Wireless traffic service platform for combined vehicle-to-vehicle and vehicle-to-infrastructure communications , 2009, IEEE Wireless Communications.