Theory-agnostic reconstruction of potential and couplings from quasinormal modes

In this work, we use a parametrized theory-agnostic approach that connects the observation of black hole quasi-normal modes with the underlying perturbation equations, with the goal of reconstructing the potential and the coupling functions appearing in the latter. The fundamental quasi-normal mode frequency and its first two overtones are modeled through a second order expansion in the deviations from general relativity, which are assumed to be small but otherwise generic. By using a principal component analysis, we demonstrate that percent-level measurements of the fundamental mode and its overtones can be used to constrain the effective potential of tensor perturbations and the coupling functions between tensor modes and ones of different helicity, with-out assuming an underlying theory. We also apply our theory-agnostic reconstruction framework to analyze simulated quasi-normal mode data produced within specific theories extending general relativity, such as Chern-Simons gravity.

[1]  M. J. Williams,et al.  Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences , 2021 .

[2]  A. Broderick,et al.  EHT tests of the strong-field regime of general relativity , 2020, Classical and Quantum Gravity.

[3]  E. Barausse,et al.  Foreground cleaning and template-free stochastic background extraction for LISA , 2020, Journal of Cosmology and Astroparticle Physics.

[4]  和徳 秋山,et al.  Event Horizon Telescopeの初期成果 , 2020 .

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  Javier A. García,et al.  Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy , 2016, The Astrophysical Journal.

[7]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[8]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[9]  Toward Precision Tests of General Relativity with Black Hole X-Ray Reflection Spectroscopy , 2018, The Astrophysical Journal.

[10]  V. Cardoso,et al.  Tests for the existence of black holes through gravitational wave echoes , 2017, 1709.01525.

[11]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[12]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[13]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[14]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[15]  Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften , 2005, Naturwissenschaften.

[16]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[17]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[18]  R. Price,et al.  Quantifying excitations of quasinormal mode systems , 1998, gr-qc/9810074.

[19]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  B. Schutz,et al.  Black hole normal modes - A semianalytic approach , 1985 .

[21]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.