Microporomechanics study of anisotropy of ASR under loading
暂无分享,去创建一个
[2] Quanshui Zheng,et al. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution , 2001 .
[3] Alain Ehrlacher,et al. A computational linear elastic fracture mechanics-based model for alkali–silica reaction , 2012 .
[4] B. Budiansky,et al. Elastic moduli of a cracked solid , 1976 .
[5] R. Esposito,et al. Multiscale material model for asr-affected concrete structures , 2013 .
[6] Stéphane Multon. Evaluation experimentale et theorique des effets mecaniques de l'alcali-reaction sur des structures modeles , 2004 .
[7] P. Grattan-Bellew. Alkali-silica reaction—Canadian experience , 1991 .
[8] R. Christensen,et al. Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .
[9] Y. Benveniste,et al. A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .
[10] Thomas E. Stanton,et al. California Experience With the Expansion of Concrete Through Reaction Between Cement and Aggregate , 1942 .
[11] Kefei Li,et al. Modélisation chimico-mécanique du comportement des bétons affectés par la réaction d'alcali-silice et expertise numérique des ouvrages d'art dégradés , 2004 .
[12] Alain Sellier,et al. Effects of aggregate size and alkali content on ASR expansion , 2008 .
[13] L. Dormieux,et al. A micromechanical approach to ASR-induced damage in concrete , 2005 .
[14] Franz-Josef Ulm,et al. Micromechanics investigation of expansive reactions in chemoelastic concrete , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] W. F. Chen,et al. Effect of transition zone on elastic moduli of concrete materials , 1996 .
[16] Etienne Grimal,et al. Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part II: Identification of Model Parameters and Application , 2008 .
[17] Stéphane Multon,et al. Effect of applied stresses on alkalisilica reaction-induced expansions , 2006 .
[18] A. Ehrlacher,et al. Sur un principe de minimum concernant des matériaux à comportement indépendant du temps physique , 1989 .
[19] Paulo J.M. Monteiro,et al. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste , 2002 .
[20] Q. Zheng,et al. A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution , 2002 .
[21] L. Dormieux,et al. Cracking risk of partially saturated porous media—Part I: Microporoelasticity model , 2010 .
[22] Cyrille F. Dunant,et al. Experimental and modelling study of the alkali-silica-reaction in concrete , 2009 .
[23] E. Hervé,et al. Application of a n-Phase Model to the Diffusion Coefficient of Chloride in Mortar , 2004 .
[24] Mitsunori Kawamura,et al. ASR gel composition and expansive pressure in mortars under restraint , 2004 .
[25] T. Uomoto,et al. Analytical Study Concerning Prediction of Concrete Expansion Due to Alkali-Silica Reaction , 1994, "SP-145: Durability of Concrete -- Proceedings Third CANMET - ACI International Conference, Nice, France 1994".
[26] Alain Sellier,et al. Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion , 2009 .
[27] Alexander Mielke,et al. Energetic formulation of multiplicative elasto-plasticity using dissipation distances , 2003 .
[28] Alain Sellier,et al. Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution , 2007 .
[29] B. Capra,et al. Modeling of Induced Mechanical Effects of Alkali-Aggregate Reactions , 1998 .
[30] Gilles A. Francfort,et al. Revisiting brittle fracture as an energy minimization problem , 1998 .
[31] S. Caré,et al. Influence of the porosity gradient in cement paste matrix on the mechanical behavior of mortar , 2010 .
[32] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[33] D. W. Hobbs,et al. Alkali-silica reaction in concrete , 1988 .
[34] A. Nielsen,et al. Development of stresses in concrete structures with alkali-silica reactions , 1993 .
[35] Hans W. Reinhardt,et al. A fracture mechanics approach to the crack formation in alkali-sensitive grains , 2011 .
[36] Günther Meschke,et al. Chemo‐hygro‐mechanical modelling and numerical simulation of concrete deterioration caused by alkali‐silica reaction , 2004 .
[37] Alain B. Giorla,et al. Modelling of Alkali-Silica Reaction under Multi-Axial Load , 2013 .
[38] 王自强,et al. Effective elastic moduli of inhomogeneous solids by embedded cell model , 1999 .
[39] A. Ehrlacher,et al. Estimating the poroelastic properties of cracked materials , 2014 .
[40] Pietro Lura,et al. E-modulus of the alkali-silica-reaction product determined by micro-indentation , 2013 .
[41] Isabelle Comby Peyrot,et al. Development and Validation of a 3D Computational Tool to describe Damage and Fracture due to Alkali-Silica Reaction in Concrete Structures , 2006 .
[42] Pierre Léger,et al. Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams , 1996 .
[43] A. Ehrlacher,et al. Model for the Transport of Alkali-Silica Reaction Gel in Concrete Porosity , 2014 .
[44] Karen L. Scrivener,et al. Effects of uniaxial stress on alkali-silica reaction induced expansion of concrete , 2012 .
[45] Stéphane Poyet. Étude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice : approche expérimentale et modélisation numérique multi-échelles des dégradations dans un environnement hydro-chemo-mécanique variable , 2003 .
[46] Etienne Grimal,et al. Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .
[47] Christian Meyer,et al. Fracture Mechanics of ASR in Concretes with Waste Glass Particles of Different Sizes , 2000 .
[48] Toshio Mura,et al. Micromechanics of defects in solids , 1982 .
[49] B. Bary. Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes , 2011 .
[50] F. Wittmann. Crack formation and fracture energy of normal and high strength concrete , 2002 .
[51] C. Dunant,et al. Finite elements in space and time for the analysis of generalised visco‐elastic materials , 2014 .
[52] J. Willis,et al. The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .
[53] O. Batic,et al. Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate , 2006 .
[54] Catherine Larive,et al. Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'Alcali-réaction et de ses effets mécaniques , 1998 .
[55] M. Berra,et al. Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction , 2010 .
[56] Karen Scrivener,et al. Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .
[57] Claudia Comi,et al. A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction , 2009 .
[58] J. Nadeau. Water–cement ratio gradients in mortars and corresponding effective elastic properties , 2002 .