Microporomechanics study of anisotropy of ASR under loading

Abstract In this article, we introduce a new micromechanical model for alkali–silica reaction. Our idea was to build a model with the following characteristics. First, the model has to be simple enough to be used to compute damage under loading and chemical attack at the level of each element in a structure code. Second, its parameters must be easy to identify on available alkali–silica reaction lab experiments. We have chosen to model the behavior of concrete containing aggregates such that most of the damage occurs in the cement paste. Using micromechanics and an energy criterion, the model remains analytical except for the minimization of the energy. The parameters were identified on Multon's triaxial experiments and good results were obtained for compressive loadings up to 10 MPa.

[2]  Quanshui Zheng,et al.  An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution , 2001 .

[3]  Alain Ehrlacher,et al.  A computational linear elastic fracture mechanics-based model for alkali–silica reaction , 2012 .

[4]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[5]  R. Esposito,et al.  Multiscale material model for asr-affected concrete structures , 2013 .

[6]  Stéphane Multon Evaluation experimentale et theorique des effets mecaniques de l'alcali-reaction sur des structures modeles , 2004 .

[7]  P. Grattan-Bellew Alkali-silica reaction—Canadian experience , 1991 .

[8]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[9]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[10]  Thomas E. Stanton,et al.  California Experience With the Expansion of Concrete Through Reaction Between Cement and Aggregate , 1942 .

[11]  Kefei Li,et al.  Modélisation chimico-mécanique du comportement des bétons affectés par la réaction d'alcali-silice et expertise numérique des ouvrages d'art dégradés , 2004 .

[12]  Alain Sellier,et al.  Effects of aggregate size and alkali content on ASR expansion , 2008 .

[13]  L. Dormieux,et al.  A micromechanical approach to ASR-induced damage in concrete , 2005 .

[14]  Franz-Josef Ulm,et al.  Micromechanics investigation of expansive reactions in chemoelastic concrete , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  W. F. Chen,et al.  Effect of transition zone on elastic moduli of concrete materials , 1996 .

[16]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part II: Identification of Model Parameters and Application , 2008 .

[17]  Stéphane Multon,et al.  Effect of applied stresses on alkalisilica reaction-induced expansions , 2006 .

[18]  A. Ehrlacher,et al.  Sur un principe de minimum concernant des matériaux à comportement indépendant du temps physique , 1989 .

[19]  Paulo J.M. Monteiro,et al.  An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste , 2002 .

[20]  Q. Zheng,et al.  A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution , 2002 .

[21]  L. Dormieux,et al.  Cracking risk of partially saturated porous media—Part I: Microporoelasticity model , 2010 .

[22]  Cyrille F. Dunant,et al.  Experimental and modelling study of the alkali-silica-reaction in concrete , 2009 .

[23]  E. Hervé,et al.  Application of a n-Phase Model to the Diffusion Coefficient of Chloride in Mortar , 2004 .

[24]  Mitsunori Kawamura,et al.  ASR gel composition and expansive pressure in mortars under restraint , 2004 .

[25]  T. Uomoto,et al.  Analytical Study Concerning Prediction of Concrete Expansion Due to Alkali-Silica Reaction , 1994, "SP-145: Durability of Concrete -- Proceedings Third CANMET - ACI International Conference, Nice, France 1994".

[26]  Alain Sellier,et al.  Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion , 2009 .

[27]  Alexander Mielke,et al.  Energetic formulation of multiplicative elasto-plasticity using dissipation distances , 2003 .

[28]  Alain Sellier,et al.  Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution , 2007 .

[29]  B. Capra,et al.  Modeling of Induced Mechanical Effects of Alkali-Aggregate Reactions , 1998 .

[30]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[31]  S. Caré,et al.  Influence of the porosity gradient in cement paste matrix on the mechanical behavior of mortar , 2010 .

[32]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[33]  D. W. Hobbs,et al.  Alkali-silica reaction in concrete , 1988 .

[34]  A. Nielsen,et al.  Development of stresses in concrete structures with alkali-silica reactions , 1993 .

[35]  Hans W. Reinhardt,et al.  A fracture mechanics approach to the crack formation in alkali-sensitive grains , 2011 .

[36]  Günther Meschke,et al.  Chemo‐hygro‐mechanical modelling and numerical simulation of concrete deterioration caused by alkali‐silica reaction , 2004 .

[37]  Alain B. Giorla,et al.  Modelling of Alkali-Silica Reaction under Multi-Axial Load , 2013 .

[38]  王自强,et al.  Effective elastic moduli of inhomogeneous solids by embedded cell model , 1999 .

[39]  A. Ehrlacher,et al.  Estimating the poroelastic properties of cracked materials , 2014 .

[40]  Pietro Lura,et al.  E-modulus of the alkali-silica-reaction product determined by micro-indentation , 2013 .

[41]  Isabelle Comby Peyrot,et al.  Development and Validation of a 3D Computational Tool to describe Damage and Fracture due to Alkali-Silica Reaction in Concrete Structures , 2006 .

[42]  Pierre Léger,et al.  Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams , 1996 .

[43]  A. Ehrlacher,et al.  Model for the Transport of Alkali-Silica Reaction Gel in Concrete Porosity , 2014 .

[44]  Karen L. Scrivener,et al.  Effects of uniaxial stress on alkali-silica reaction induced expansion of concrete , 2012 .

[45]  Stéphane Poyet Étude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice : approche expérimentale et modélisation numérique multi-échelles des dégradations dans un environnement hydro-chemo-mécanique variable , 2003 .

[46]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .

[47]  Christian Meyer,et al.  Fracture Mechanics of ASR in Concretes with Waste Glass Particles of Different Sizes , 2000 .

[48]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[49]  B. Bary Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes , 2011 .

[50]  F. Wittmann Crack formation and fracture energy of normal and high strength concrete , 2002 .

[51]  C. Dunant,et al.  Finite elements in space and time for the analysis of generalised visco‐elastic materials , 2014 .

[52]  J. Willis,et al.  The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .

[53]  O. Batic,et al.  Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate , 2006 .

[54]  Catherine Larive,et al.  Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'Alcali-réaction et de ses effets mécaniques , 1998 .

[55]  M. Berra,et al.  Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction , 2010 .

[56]  Karen Scrivener,et al.  Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .

[57]  Claudia Comi,et al.  A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction , 2009 .

[58]  J. Nadeau Water–cement ratio gradients in mortars and corresponding effective elastic properties , 2002 .