WE HOLD THESE TRUTHS TO BE SELF-EVIDENT: BUT WHAT DO WE MEAN BY THAT?
暂无分享,去创建一个
[1] Hilary Putnam,et al. The Philosophy of Mathematics: , 2019, The Mathematical Imagination.
[2] Robin Jeshion. Frege: Evidence for Self-Evidence , 2004 .
[3] J. Heijenoort. From Frege To Gödel , 1967 .
[4] G. Cantor,et al. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .
[5] Per Martin-Löf,et al. 100 years of Zermelo's axiom of choice: what was the problem with it? , 2006, Comput. J..
[6] Gottlob Frege,et al. Philosophical and mathematical correspondence , 1980 .
[7] P. Kitcher. Explanatory unification and the causal structure of the world , 1989 .
[8] Gregory H. Moore. Zermelo’s Axiom of Choice , 1982 .
[9] S. Lindström,et al. Logicism, intuitionism, and formalism : what has become of them? , 2009 .
[10] George Boolos,et al. Between Logic and Intuition: Must We Believe in Set Theory? , 2000 .
[11] T. Burge. Frege on Knowing the Foundation , 1998 .
[12] Stewart Shapiro,et al. Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics , 2005 .
[13] B. Russell,et al. Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.
[14] Robin Jeshion. The Obvious. , 2000, Canadian journal of comparative medicine.
[15] Robin Jeshion. Frege's Notions of Self‐Evidence , 2001 .
[16] Tyler Burge,et al. Truth, thought, reason: essays on Frege , 2005 .
[17] S. Shapiro. Philosophy of mathematics : structure and ontology , 1997 .
[18] Stephan Korner. Realism in mathematics , 1991 .
[19] Jaegwon Kim,et al. Explanatory Knowledge and Metaphysical Dependence , 1994 .
[20] O. Spies. Die grundlagen der arithmetik: by G. Frege. English translation by J. L. Austin. 119 pages, 14 × 22 cm. Breslau, Verlag von Wilhelm Koebner, 1884, and New York, Philosophical Library, 1950. Price, $4.75 , 1950 .
[21] G. M.. Grundlagen der Geometrie , 1909, Nature.
[22] G. Peano. Formulaire de mathématiques , .
[23] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[24] D. Hilbert. Über das Unendliche , 1926 .
[25] George Boolos,et al. Logic, Logic, and Logic , 2000 .
[26] Shaughan Lavine,et al. Understanding the Infinite , 1998 .
[27] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .
[28] R. Gregory Taylor. Zermelo, reductionism, and the philosophy of mathematics , 1993, Notre Dame J. Formal Log..
[29] Paul Boghossian,et al. Content and Self-Knowledge , 1989 .
[30] M. Detlefsen. Hilbert's program , 1986 .
[31] P. Wiener,et al. The Encyclopedia of Philosophy. , 1968 .
[32] M. Hesse. THE ENCYCLOPEDIA OF PHILOSOPHY , 1969 .
[33] Friedrich Waismann,et al. Lectures on the Philosophy of Mathematics , 1982 .
[34] G. Frege. Grundgesetze der Arithmetik , 1893 .
[35] Gregory H. Moore. Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .
[36] Rolf George,et al. The Semantic Tradition from Kant to Carnap , 1996 .
[37] G. T. KNEEBONE. Logic of Mathematics , 1973, Nature.