Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome

Drug discovery campaigns against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are beginning to target the viral RNA genome1, 2. The frameshift stimulation element (FSE) of the SARS-CoV-2 genome is required for balanced expression of essential viral proteins and is highly conserved, making it a potential candidate for antiviral targeting by small molecules and oligonucleotides3–6. To aid global efforts focusing on SARS-CoV-2 frameshifting, we report exploratory results from frameshifting and cellular replication experiments with locked nucleic acid (LNA) antisense oligonucleotides (ASOs), which support the FSE as a therapeutic target but highlight difficulties in achieving strong inactivation. To understand current limitations, we applied cryogenic electron microscopy (cryo-EM) and the Ribosolve7 pipeline to determine a three-dimensional structure of the SARS-CoV-2 FSE, validated through an RNA nanostructure tagging method. This is the smallest macromolecule (88 nt; 28 kDa) resolved by single-particle cryo-EM at subnanometer resolution to date. The tertiary structure model, defined to an estimated accuracy of 5.9 Å, presents a topologically complex fold in which the 5′ end threads through a ring formed inside a three-stem pseudoknot. Our results suggest an updated model for SARS-CoV-2 frameshifting as well as binding sites that may be targeted by next generation ASOs and small molecules.

[1]  A. Pyle,et al.  Comprehensive in-vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms , 2020, bioRxiv.

[2]  Q. Zhang,et al.  In vivo structural characterization of the whole SARS-CoV-2 RNA genome identifies host cell target proteins vulnerable to re-purposed drugs , 2020, bioRxiv.

[3]  M. Bathe,et al.  Insights into the secondary structural ensembles of the full SARS-CoV-2 RNA genome in infected cells , 2020 .

[4]  M. Woodside,et al.  Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot , 2020, bioRxiv.

[5]  D. Fourmy,et al.  A cytosine-to-uracil change within the programmed -1 ribosomal frameshift signal of SARS-CoV-2 results in structural similarities with the MERS-CoV signal , 2020, bioRxiv.

[6]  Custom-designed, degradation-resistant messenger RNAs in yeast , 2020 .

[7]  Jamie A. Kelly,et al.  Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2) , 2020, The Journal of Biological Chemistry.

[8]  R. Baric,et al.  Comparative analysis of coronavirus genomic RNA structure reveals conservation in SARS-like coronaviruses , 2020, bioRxiv.

[9]  Tomasz K. Wirecki,et al.  Genome-wide mapping of therapeutically-relevant SARS-CoV-2 RNA structures , 2020, bioRxiv.

[10]  Chandra L. Theesfeld,et al.  Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate , 2020, bioRxiv.

[11]  J. Tuszynski,et al.  Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers , 2020, bioRxiv.

[12]  Andrew M. Watkins,et al.  Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures , 2020, Nature Methods.

[13]  Rhiju Das,et al.  RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look , 2020, RNA.

[14]  Lisa E. Gralinski,et al.  A mouse-adapted SARS-CoV-2 model for the evaluation of COVID-19 medical countermeasures , 2020, bioRxiv.

[15]  David Haussler,et al.  The UCSC SARS-CoV-2 Genome Browser , 2020, Nature Genetics.

[16]  Hafeez S Haniff,et al.  An in silico map of the SARS-CoV-2 RNA Structurome , 2020, bioRxiv.

[17]  Asher Mullard Flooded by the torrent: the COVID-19 drug pipeline , 2020, The Lancet.

[18]  Andrew M. Watkins,et al.  De novo 3D models of SARS-CoV-2 RNA elements and small-molecule-binding RNAs to aid drug discovery , 2020 .

[19]  L. Guddat,et al.  Structure of the RNA-dependent RNA polymerase from COVID-19 virus , 2020, Science.

[20]  Yan Zhang,et al.  Structural Basis for the Inhibition of the RNA-Dependent RNA Polymerase from SARS-CoV-2 by Remdesivir , 2020, bioRxiv.

[21]  Hualiang Jiang,et al.  Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors , 2020, Nature.

[22]  Xiaotao Lu,et al.  An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice , 2020, Science Translational Medicine.

[23]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[24]  Yechun Xu,et al.  Structure of Mpro from COVID-19 virus and discovery of its inhibitors , 2020, bioRxiv.

[25]  Peixuan Guo,et al.  Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy , 2020, Nature Communications.

[26]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[27]  N. Grigorieff,et al.  mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding , 2020, bioRxiv.

[28]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[29]  Jing Zhao,et al.  Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.

[30]  J. Puglisi,et al.  The energy landscape of −1 ribosomal frameshifting , 2020, Science Advances.

[31]  W. Chiu,et al.  Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution , 2019, Nature Communications.

[32]  W. Chiu,et al.  Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. , 2019 .

[33]  W. Chiu,et al.  Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions , 2019, Nature Structural & Molecular Biology.

[34]  Andrew M. Watkins,et al.  FARFAR2: Improved de novo Rosetta prediction of complex global RNA folds , 2019, bioRxiv.

[35]  Paul D. Carlson,et al.  Computational design of three-dimensional RNA structure and function , 2019, Nature Nanotechnology.

[36]  M. Woodside,et al.  Complex dynamics under tension in a high-efficiency frameshift stimulatory structure , 2019, Proceedings of the National Academy of Sciences.

[37]  Sangdun Choi,et al.  A Structure-Based Drug Discovery Paradigm , 2019, International journal of molecular sciences.

[38]  Megan Cully Antifungal drugs: Small molecules targeting a tertiary RNA structure fight fungi , 2018, Nature Reviews Drug Discovery.

[39]  Julio A. Kovacs,et al.  Accurate flexible refinement of atomic models against medium-resolution cryo-EM maps using damped dynamics , 2018, BMC Structural Biology.

[40]  D. Case,et al.  Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. , 2018, Structure.

[41]  T. Singer,et al.  A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides , 2017, Molecular therapy. Nucleic acids.

[42]  R. Persson,et al.  Locked nucleic acid: modality, diversity, and drug discovery. , 2018, Drug discovery today.

[43]  Rhiju Das,et al.  RNA structure inference through chemical mapping after accidental or intentional mutations , 2017, Proceedings of the National Academy of Sciences.

[44]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[45]  Y. Weizmann,et al.  Synthesizing topological structures containing RNA , 2017, Nature Communications.

[46]  D. Falzarano,et al.  SARS and MERS: recent insights into emerging coronaviruses , 2016, Nature Reviews Microbiology.

[47]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[48]  Pablo Cordero,et al.  Primerize: automated primer assembly for transcribing non-coding RNA domains , 2015, Nucleic Acids Res..

[49]  Rhiju Das,et al.  Standardization of RNA Chemical Mapping Experiments , 2014, Biochemistry.

[50]  Stine Bjerkestrand,et al.  Open science. , 2019, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[51]  R. Baric,et al.  Altering SARS Coronavirus Frameshift Efficiency Affects Genomic and Subgenomic RNA Production , 2013, Viruses.

[52]  M. Hennig,et al.  RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus , 2012, Nucleic acids research.

[53]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[54]  Rhiju Das,et al.  Ultraviolet Shadowing of RNA Can Cause Significant Chemical Damage in Seconds , 2012, Scientific Reports.

[55]  J. Dinman Mechanisms and implications of programmed translational frameshifting , 2012, Wiley interdisciplinary reviews. RNA.

[56]  J. Burnett,et al.  RNA-based therapeutics: current progress and future prospects. , 2012, Chemistry & biology.

[57]  So-Jung Park,et al.  Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. , 2011, Journal of the American Chemical Society.

[58]  L. Enjuanes,et al.  Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication , 2011, Antiviral Research.

[59]  Seunghyun Park,et al.  HiTRACE: high-throughput robust analysis for capillary electrophoresis , 2011, Bioinform..

[60]  R. Corbau,et al.  Selection, Optimization, and Pharmacokinetic Properties of a Novel, Potent Antiviral Locked Nucleic Acid-Based Antisense Oligomer Targeting Hepatitis C Virus Internal Ribosome Entry Site , 2011, Antimicrobial Agents and Chemotherapy.

[61]  Hstau Y Liao,et al.  Definition and estimation of resolution in single-particle reconstructions. , 2010, Structure.

[62]  Thomas D. Goddard,et al.  Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. , 2010, Journal of structural biology.

[63]  J. Dinman,et al.  Achieving a Golden Mean: Mechanisms by Which Coronaviruses Ensure Synthesis of the Correct Stoichiometric Ratios of Viral Proteins , 2010, Journal of Virology.

[64]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[65]  K. Pollard,et al.  Detection of nonneutral substitution rates on mammalian phylogenies. , 2010, Genome research.

[66]  Paul Avery,et al.  The Open Science Grid , 2007 .

[67]  B. Berkhout,et al.  Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites , 2007, Retrovirology.

[68]  S. Nader S. Reihani,et al.  Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting , 2007, Proceedings of the National Academy of Sciences.

[69]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[70]  Serafim Batzoglou,et al.  CONTRAfold: RNA secondary structure prediction without physics-based models , 2006, ISMB.

[71]  David I. Stuart,et al.  A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting , 2006, Nature.

[72]  Peter Kuhn,et al.  Inhibition, Escape, and Attenuated Growth of Severe Acute Respiratory Syndrome Coronavirus Treated with Antisense Morpholino Oligomers , 2005, Journal of Virology.

[73]  Jonathan D Dinman,et al.  A Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal , 2005, PLoS biology.

[74]  J. Dinman,et al.  Torsional restraint: a new twist on frameshifting pseudoknots , 2005, Nucleic acids research.

[75]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[76]  F. Huang,et al.  Superior 5' homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. , 2004, Nucleic acids research.

[77]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[78]  Obi L. Griffith,et al.  The Genome Sequence of the SARS-Associated Coronavirus , 2003, Science.

[79]  J. Frank,et al.  Direct three-dimensional localization and positive identification of RNA helices within the ribosome by means of genetic tagging and cryo-electron microscopy. , 1999, Structure.

[80]  P. Kelly,et al.  Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. , 1998, RNA.

[81]  J. F. Atkins,et al.  A dual-luciferase reporter system for studying recoding signals. , 1998, RNA.