Augmentation of tendon attachment to porous ceramics by bone marrow stromal cells in a rabbit model

Tendon attachment to interconnected porous calcium hydroxyapatite ceramics (IP-CHA) with cultured bone marrow stromal cells (BMSC) was analysed. The purpose of this study was to evaluate whether BMSC in IP-CHA could augment the tendon attachment to IP-CHA histologically and biomechanically. Eighteen Japanese white rabbits were used. Cultured BMSCs were subcultured in IP-CHA. The grafted tendon and IP-CHA with BMSC complex were implanted in a bone defect of the knee [BMSC(+) group]. In the contralateral knee, a tendon and IP-CHA without BMSC complex were implanted [BMSC(-) group]. Histological findings of the interface between the tendon and IP-CHA were similar in the two groups 3 weeks after the operation. However, 6 weeks after the operation, more abundant bone formation around the tendon was observed in the BMSC(+) group. The direct apposition of the tendon to bone in pores and collagen fibre continuity between the tendon and fibrous tissue in pores were observed. In biomechanical evaluation, the maximum pull-out load of the tendon from the IP-CHA in the BMSC(+) group was significantly higher than that in the BMSC(-) group 6 weeks after the operation. BMSCs cultured in IP-CHA could augment tendon attachment to IP-CHA.RésuméLe propos de cette étude est de déterminer si l’utilisation de culture cellulaire de moelle osseuse (BMSC) avec l’utilisation de calcium d’hydroxyapatite (IP-CHA) augmente la résistance de l’attachement osseux du tendon sur le plan histologique et biomécanique. Dix-huit lapins blancs du Japon ont été utilisés pour ce travail. Les tendons greffés avec hydroxyapatite et culture de la cellule de moelle osseuse ont été implantés dans une defect au niveau du genou. Sur le genou opposé, le tendon a été implanté sans culture cellulaire. Sur le plan histologique les résultats sont identiques dans les deux groupes, 3 semaines après intervention, cependant 6 semaines après l’intervention la progression de la formation osseuse est plus importante autour du tendon ayant bénéficié d’une culture cellulaire de moelle osseuse. Il en est de même en ce qui concerne la résistance biomécanique du tendon qui est significativement plus importante dans le groupe culture cellulaire, 6 semaines après l’intervention.

[1]  H. Tohyama,et al.  Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. , 2001, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[2]  秋田 鐘弼 Capillary Vessel Network Integration by Inserting a Vascular Pedicle Enhances Bone Formation in Tissue-Engineered Bone Using Interconnected Porous Hydroxyapatite Ceramics , 2006 .

[3]  G. Finerman,et al.  Morphology and Matrix Composition During Early Tendon to Bone Healing , 1997, Clinical orthopaedics and related research.

[4]  M. Ochi,et al.  Attachment of autogenous tendon graft to cortical bone is better than to cancellous bone , 2003, Acta orthopaedica Scandinavica.

[5]  J. Grimes,et al.  Evaluation of tendon-to-bone reattachment: a rabbit model. , 2000, American journal of orthopedics.

[6]  Hideki Yoshikawa,et al.  Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. , 2005, Biomaterials.

[7]  玉井 宣行 Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo , 2003 .

[8]  H. Ohgushi,et al.  Bone Tissue Engineering Using Novel Interconnected Porous Hydroxyapatite Ceramics Combined with Marrow Mesenchymal Cells: Quantitative and Three-Dimensional Image Analysis , 2004, Cell transplantation.

[9]  W. Grana,et al.  Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. , 2000, The American journal of knee surgery.

[10]  Hiroshi Yamada,et al.  The influence of mechanical stress on graft healing in a bone tunnel. , 2001, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[11]  N. Adachi,et al.  Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. , 2006, Journal of biomedical materials research. Part A.

[12]  M. Ochi,et al.  Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from Green rat. , 2004, Journal of biomedical materials research. Part A.

[13]  Hideki Yoshikawa,et al.  A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). , 2005, Osteoarthritis and cartilage.

[14]  R. Warren,et al.  Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. , 1993, The Journal of bone and joint surgery. American volume.