Approaches to analysis with infinitesimals following Robinson, Nelson, and others
暂无分享,去创建一个
Karel Hrbacek | Peter Fletcher | Sam Sanders | Vladimir Kanovei | Mikhail G. Katz | Claude Lobry | C. Lobry | V. Kanovei | K. Hrbacek | P. Fletcher | M. Katz | Sam Sanders
[1] Benno van den Berg,et al. A functional interpretation for nonstandard arithmetic , 2012, Ann. Pure Appl. Log..
[2] Yves Péraire. Infinitesimal Approach of Almost-Automorphic Functions , 1993, Ann. Pure Appl. Log..
[3] E. I. Gordon. Nonstandard Methods in Commutative Harmonic Analysis , 1997 .
[4] Petr Vopenka,et al. Alternative Set Theory , 2009, Encyclopedia of Optimization.
[5] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[6] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[7] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[8] Sam Sanders,et al. Reverse formalism 16 , 2017, Synthese.
[9] Mikhail G. Katz,et al. EDWARD NELSON (1932–2014) , 2015, The Review of Symbolic Logic.
[10] Abraham Robinson. Selected papers of Abraham Robinson , 1978 .
[11] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[12] Michel Fliess,et al. Analyse non standard du bruit , 2006, ArXiv.
[13] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[14] David Ballard. Foundational Aspects of “Non”standard Mathematics , 1994 .
[15] J. Harthong. Etudes sur la mécanique quantique , 1984 .
[16] Saharon Shelah,et al. A definable nonstandard model of the reals , 2004, J. Symb. Log..
[17] Heinz Weisshaupt,et al. Diffusion processes via parabolic equations: an infinitesimal approach to Lindeberg's limit theorem , 2009, J. Log. Anal..
[18] Karel Hrbacek,et al. Axiomatic foundations for Nonstandard Analysis , 1978 .
[19] W. Luxemburg. Non-Standard Analysis , 1977 .
[20] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[21] Karin U. Katz,et al. Euler’s Lute and Edwards’s Oud , 2015, 1506.02586.
[22] K. Zdanowski,et al. The Intended Model of Arithmetic. An Argument from Tennenbaum's Theorem , 2006 .
[23] M. Schützenberger,et al. Triangle of Thoughts , 2001 .
[24] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[25] Alain Robert. Analyse non standard , 1985 .
[26] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[27] Mariam Thalos,et al. Why is there Philosophy of Mathematics at all , 2016 .
[28] C. Gomes,et al. Structure and Randomness , 2006 .
[29] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[30] Toru Kawai. Axiom systems of nonstandard set theory , 1981 .
[31] Yves Péraire,et al. THEORIE RELATIVE DES ENSEMBLES INTERNES , 1992 .
[32] Jeremy Avigad. Weak Theories of Nonstandard Arithmetic and Analysis , 2000 .
[33] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[34] Euler’s definition of the derivative , 2007 .
[35] Karel Hrbacek,et al. Analysis with Ultrasmall Numbers , 2010, Am. Math. Mon..
[36] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[37] Karin U. Katz,et al. Gregory’s Sixth Operation , 2016, The Best Writing on Mathematics 2019.
[38] P. Vopenka,et al. Mathematics in the alternative set theory , 1979 .
[39] T. Tao. Compactness and Contradiction , 2013 .
[40] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[41] Guy Wallet,et al. Entrée-sortie dans un tourbillon , 1986 .
[42] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[43] Piotr Blaszczyk,et al. Leibniz versus Ishiguro: Closing a Quarter Century of Syncategoremania , 2016, HOPOS: The Journal of the International Society for the History of Philosophy of Science.
[44] Hilary Putnam,et al. Models and reality , 1980, Journal of Symbolic Logic.
[45] Jeremy Gray. The Real and the Complex: A History of Analysis in the 19th Century , 2015 .
[46] Renling Jin. The sumset phenomenon , 2001 .
[47] Mikhail G. Katz,et al. Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..
[48] Bar-Ilan University,et al. From Pythagoreans and Weierstrassians to True Infinitesimal Calculus , 2017 .
[49] Peter A. Loeb,et al. Conversion from nonstandard to standard measure spaces and applications in probability theory , 1975 .
[50] Joel David Hamkins,et al. Is the Dream Solution of the Continuum Hypothesis Attainable? , 2012, Notre Dame J. Formal Log..
[51] Joel David Hamkins,et al. THE SET-THEORETIC MULTIVERSE , 2011, The Review of Symbolic Logic.
[52] Tools , 2019, Oncology Issues.
[53] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[54] H. Gaifman. Non-Standard Models in a Broader Perspective , 2005 .
[55] La mathematique non standard vieille de soixante ans , 1981 .
[56] Vladimir Kanovei,et al. Internal approach to external sets and universes , 1996, Stud Logica.
[57] Robert Lutz. Nonstandard Analysis.: A Practical Guide with Applications. , 1981 .
[58] Vieri Benci,et al. Alpha-theory: An elementary axiomatics for nonstandard analysis , 2003 .
[59] Isaac Goldbring,et al. Hilbert's Fifth Problem for Local Groups , 2007, 0708.3871.
[60] Mikhail G. Katz,et al. Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.
[61] Leif Arkeryd. Nonstandard Analysis , 2005, Am. Math. Mon..
[62] Terence Tao,et al. Sum-avoiding sets in groups , 2016, 1603.03068.
[63] Vieri Benci,et al. The eightfold path to Nonstandard Analysis , 2004 .
[64] H. Jerome Keisler,et al. On the strength of nonstandard analysis , 1986, Journal of Symbolic Logic.
[65] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[66] Dalibor Pražák,et al. Nonstandard analysis of global attractors , 2015, Math. Log. Q..
[67] M. D. Nasso,et al. Iterated hyper-extensions and an idempotent ultrafilter proof of Rado’s Theorem , 2013, 1304.3009.
[68] T. Tao. Hilbert's Fifth Problem and Related Topics , 2014 .
[69] H. Jerome Keisler,et al. An Infinitesimal Approach to Stochastic Analysis , 1984 .
[70] Heinz Weisshaupt,et al. Radically elementary analysis of an interacting particle system at an unstable equilibrium , 2011, J. Log. Anal..
[71] Mikhail G. Katz,et al. The Mathematical Intelligencer Flunks the Olympics , 2016, ArXiv.
[72] H. Keisler. Foundations of infinitesimal calculus , 1976 .
[73] Errett Bishop,et al. Review: H. Jerome Keisler, Elementary calculus , 1977 .
[74] Karel Hrbacek,et al. Standard Foundations for Nonstandard Analysis , 1992, J. Symb. Log..
[75] K. Easwaran. Regularity and Hyperreal Credences , 2014 .
[76] Paul R. Halmos,et al. I Want to be a Mathematician , 1985 .
[77] Vladimir Kanovei,et al. Proofs and Retributions, Or: Why Sarah Can’t Take Limits , 2015 .
[78] P. V. Andreev,et al. An Axiomatics for Nonstandard Set Theory, Based on von Neumann-Bernays-Gödel Theory , 2001, J. Symb. Log..
[79] Vladimir Kanovei,et al. Nonstandard Analysis, Axiomatically , 2004 .
[80] Peter Fletcher,et al. Nonstandard set theory , 1989, Journal of Symbolic Logic.
[81] Nonstandard Asymptotic Analysis , 1987 .
[82] K. D. Stroyan,et al. Introduction to the theory of infinitesimals , 1976 .
[83] W. A. J. Luxemburg,et al. Applications of model theory to algebra, analysis, and probability , 1971 .
[84] Joel David Hamkins,et al. A Natural Model of the Multiverse Axioms , 2010, Notre Dame J. Formal Log..
[85] G. Ferraro. Differentials and differential coefficients in the Eulerian foundations of the calculus , 2004 .
[86] Mikolás Janota,et al. Digital Object Identifier (DOI): , 2000 .
[87] Vladimir Kanovei,et al. Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.
[88] Vladimir Kanovei,et al. Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.
[89] Karel Hrbacek,et al. Relative set theory: Internal view , 2009, J. Log. Anal..
[90] Karel Hrbacek. Axiom of Choice in nonstandard set theory , 2012, J. Log. Anal..
[91] L. Dries,et al. Hilbert's 5th problem , 2015 .
[92] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[93] David A. Ross. Loeb Measure and Probability , 1997 .
[94] C. Henson,et al. FOUNDATIONS OF NONSTANDARD ANALYSIS A Gentle Introduction to Nonstandard Extensions , 1996 .
[95] TO BE OR NOT TO BE CONSTRUCTIVE , 2017 .
[96] Vladimir Kanovei,et al. Is Leibnizian Calculus Embeddable in First Order Logic? , 2016, 1605.03501.
[97] Mikhail G. Katz,et al. Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.
[98] Stephan Korner. Realism in mathematics , 1991 .
[99] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[100] Frank Quinn. A Revolution in Mathematics? What Really Happened a Century Ago and Why It Matters Today , 2012 .
[101] Alexandre V. Borovik,et al. A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos , 2016, Logica Universalis.
[102] D. Hilbert. Über das Unendliche , 1926 .
[103] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[104] Markus Schweizer. Nonstandard Asymptotic Analysis , 2016 .
[105] Mikhail G. Katz,et al. Differential geometry via infinitesimal displacements , 2014, J. Log. Anal..
[106] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[107] Vladimir Kanovei,et al. Small oscillations of the pendulum, Euler’s method, and adequality , 2016, 1604.06663.
[108] Per Martin-Löf,et al. Mathematics of infinity , 1988, Conference on Computer Logic.
[109] A Nonstandard Proof of the Jordan Curve Theorem , 1996, math/9608204.
[110] Frederik Herzberg,et al. Radically Elementary Probability Theory , 2013 .
[111] Joel David Hamkins,et al. Some Second Order Set Theory , 2009, ICLA.
[112] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[113] Paul R. Halmos,et al. I Want to Be A Mathematician: An Automathography , 1986 .
[114] A. Pillay. Models of Peano Arithmetic , 1981 .
[115] Robert Goldblatt,et al. Lectures on the hyperreals , 1998 .
[116] Petr Hájek,et al. The theory of semisets , 1972 .
[117] Joel David Hamkins,et al. The Set-theoretic Multiverse : A Natural Context for Set Theory( Mathematical Logic and Its Applications) , 2011 .
[118] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[119] V. A. Molchanov. The use of double nonstandard enlargements in topology , 1989 .
[120] Robert M. Anderson,et al. A non-standard representation for Brownian Motion and Itô integration , 1976 .
[121] S. Albeverio. Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .
[122] Vladimir Kanovei,et al. Problems of set-theoretic non-standard analysis , 2007 .
[123] Analyse Non Standard et Représentation du Réel: Deux exemples en Automatique , 2007 .
[124] Patrick Riley,et al. Leibniz's Philosophy of Logic and Language , 1973 .
[125] J. E. Rubio. Optimization and Nonstandard Analysis , 1994 .
[126] K. Gödel,et al. Review of Skolem's Über die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems , 1990 .
[127] Paolo Mancosu,et al. MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.
[128] Abraham Robinson. Concerning Progress In The Philosophy Of Mathematics , 1975 .
[129] George Wilmers,et al. Models OF Peano Arithmetic (Oxford Logic Guides 15) , 1993 .
[130] Yevgeniy Gordon. AN AXIOMATICS FOR NONSTANDARD SET THEORY , .
[131] Vladimir Kanovei,et al. Undecidable hypotheses in Edward Nelson's internal set theory , 1991 .
[132] R. Werner,et al. Classical mechanics as quantum mechanics with infinitesimal ħ , 1995 .