High-resolution, long-term isotopic and isotopologue variation identifies the sources and sinks of methane in a deep subsurface carbon cycle

[1]  M. Iron,et al.  Theoretical estimates of equilibrium carbon and hydrogen isotope effects in microbial methane production and anaerobic oxidation of methane , 2020, Geochimica et Cosmochimica Acta.

[2]  Xiahong Feng,et al.  Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects , 2020 .

[3]  M. Kölling,et al.  Clumped isotopologue fractionation by microbial cultures performing the anaerobic oxidation of methane , 2020, Geochimica et Cosmochimica Acta.

[4]  B. Marty,et al.  Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen , 2020, Nature.

[5]  J. Eiler,et al.  Identifying thermogenic and microbial methane in deep water Gulf of Mexico Reservoirs , 2020, Geochimica et Cosmochimica Acta.

[6]  J. Eiler,et al.  Isotopic evidence for quasi-equilibrium chemistry in thermally mature natural gases , 2020, Proceedings of the National Academy of Sciences.

[7]  E. Reeves,et al.  Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere , 2020 .

[8]  S. Sylva,et al.  Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in olivine-rich rocks , 2020, Philosophical Transactions of the Royal Society A.

[9]  C. Ballentine,et al.  Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments , 2019 .

[10]  E. Young A Two-Dimensional Perspective on CH4 Isotope Clumping , 2019, Deep Carbon.

[11]  Thomas F. Miller,et al.  Comparison of Experimental vs Theoretical Abundances of 13CH3D and 12CH2D2 for Isotopically Equilibrated Systems from 1 to 500 °C , 2019, ACS Earth and Space Chemistry.

[12]  J. Seewald,et al.  Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions , 2019, Proceedings of the National Academy of Sciences.

[13]  B. Lollar,et al.  ‘Follow the Water’: Hydrogeochemical Constraints on Microbial Investigations 2.4 km Below Surface at the Kidd Creek Deep Fluid and Deep Life Observatory , 2019, Geomicrobiology Journal.

[14]  T. Treude,et al.  Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methane , 2019, Geochemical Perspectives Letters.

[15]  H. Bao,et al.  A kinetic model for isotopologue signatures of methane generated by biotic and abiotic CO2 methanation , 2019, Geochimica et Cosmochimica Acta.

[16]  X. Xia,et al.  Kinetic clumped isotope fractionation during the thermal generation and hydrogen exchange of methane , 2019, Geochimica et Cosmochimica Acta.

[17]  D. LaRowe,et al.  Methane sources and sinks in continental sedimentary systems: New insights from paired clumped isotopologues 13CH3D and 12CH2D2 , 2019, Geochimica et Cosmochimica Acta.

[18]  T. Treude,et al.  Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methane , 2019, Geochemical Perspectives Letters.

[19]  P. Falkowski,et al.  Astrobiology Science Strategy for the Search for Life in the Universe , 2018 .

[20]  T. Kieft,et al.  The biomass and biodiversity of the continental subsurface , 2018, Nature Geoscience.

[21]  M. Könneke,et al.  Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane , 2018, Geochimica et Cosmochimica Acta.

[22]  T. Treude,et al.  Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 & 13CH3D in methane , 2018 .

[23]  T. Kieft,et al.  Fluctuations in populations of subsurface methane oxidizers in coordination with changes in electron acceptor availability , 2018, bioRxiv.

[24]  S. Morita,et al.  Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex , 2018, Science Advances.

[25]  J. Mcdermott,et al.  Clumped isotopologue constraints on the origin of methane at seafloor hot springs , 2018 .

[26]  M. Lewan,et al.  Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases , 2018 .

[27]  C. N. Sutcliffe,et al.  Bioenergetic Constraints on Microbial Hydrogen Utilization in Precambrian Deep Crustal Fracture Fluids , 2018 .

[28]  C. N. Sutcliffe,et al.  Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases , 2018 .

[29]  Lin Wei Catalytic generation of methane at 60–100 °C and 0.1–300 MPa from source rocks containing kerogen Types I, II, and III , 2017, Geochimica et Cosmochimica Acta.

[30]  Moran,et al.  Methane clumped isotopes: Progress and potential for a new isotopic tracer , 2017 .

[31]  E. Trembath-Reichert,et al.  Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds , 2017, Proceedings of the National Academy of Sciences.

[32]  C. Heim,et al.  Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon , 2017 .

[33]  H. Nykänen,et al.  Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield , 2017 .

[34]  J. Parnell,et al.  Global hydrogen reservoirs in basement and basins , 2017, Geochemical Transactions.

[35]  I. Estève,et al.  Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps , 2017, Nature Communications.

[36]  A. Stams,et al.  Reverse Methanogenesis and Respiration in Methanotrophic Archaea , 2017, Archaea.

[37]  Edward D. Young,et al.  The relative abundances of resolved l2 CH 2 D 2 and 13 CH 3 D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases , 2016 .

[38]  David H Perlman,et al.  An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers , 2016, Proceedings of the National Academy of Sciences.

[39]  P. Welander,et al.  Fractionation of the methane isotopologues 13 CH 4 , 12 CH 3 D, and 13 CH 3 D during aerobic oxidation of methane by Methylococcus capsulatus (Bath) , 2016 .

[40]  G. Slater,et al.  Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks , 2016, Nature Communications.

[41]  D. A. Smith,et al.  Diverse origins of Arctic and subarctic methane point source emissions identified with multiply substituted isotopologues , 2016 .

[42]  I. Kukkonen,et al.  Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids , 2016 .

[43]  Edward D. Young,et al.  A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases , 2016 .

[44]  T. Gleeson,et al.  The global volume and distribution of modern groundwater , 2016 .

[45]  T. Kieft,et al.  Variations in microbial carbon sources and cycling in the deep continental subsurface , 2016 .

[46]  T. Kieft,et al.  A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust , 2015, The ISME Journal.

[47]  P. Welander,et al.  Fractionation of the methane isotopologues , 2016 .

[48]  P. Pitkänen,et al.  Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland , 2015, BioMed research international.

[49]  H. Tomaru,et al.  Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor , 2015, Science.

[50]  L. Purkamo,et al.  The origin, source, and cycling of methane in deep crystalline rock biosphere , 2015, Front. Microbiol..

[51]  D. Valentine,et al.  Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues , 2015 .

[52]  C. N. Sutcliffe,et al.  Nonequilibrium clumped isotope signals in microbial methane , 2015, Science.

[53]  T. Onstott,et al.  The contribution of the Precambrian continental lithosphere to global H2 production , 2014, Nature.

[54]  J. M. Eiler,et al.  Formation temperatures of thermogenic and biogenic methane , 2014, Science.

[55]  M. Zahniser,et al.  Measurement of a doubly substituted methane isotopologue, ¹³CH₃D, by tunable infrared laser direct absorption spectroscopy. , 2014, Analytical chemistry.

[56]  M. Kuypers,et al.  Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane , 2014 .

[57]  A. Schimmelmann,et al.  Combined ^(13)C–D and D–D clumping in methane: Methods and preliminary results , 2014 .

[58]  Michael A Webb,et al.  Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane. , 2014, The journal of physical chemistry. A.

[59]  Bethany L. Ehlmann,et al.  Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars , 2013 .

[60]  G. Slater,et al.  Deep fracture fluids isolated in the crust since the Precambrian era , 2013, Nature.

[61]  Barbara Sherwood Lollar,et al.  ABIOTIC METHANE ON EARTH , 2013 .

[62]  W. Brazelton,et al.  Serpentinization, Carbon, and Deep Life , 2013 .

[63]  K. Pedersen Influence of H(2) and O(2) on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. , 2012, FEMS microbiology ecology.

[64]  T. McCollom Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth’s Deep Subsurface , 2012 .

[65]  A. Boetius,et al.  Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction , 2011, Proceedings of the National Academy of Sciences.

[66]  M. Kendrick,et al.  Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: Constraints from noble gases and halogens , 2011 .

[67]  T. Onstott,et al.  Neon identifies two billion year old fluid component in Kaapvaal Craton , 2011 .

[68]  B. Lollar,et al.  The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions , 2010 .

[69]  K. Knittel,et al.  Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. , 2009, Environmental microbiology reports.

[70]  Yongchun Tang,et al.  Formation and abundance of doubly-substituted methane isotopologues (13CH3D) in natural gas systems , 2008 .

[71]  T. Onstott,et al.  Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons , 2008 .

[72]  P. Thurston,et al.  Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization , 2008 .

[73]  S. Joye,et al.  Tracing the slow growth of anaerobic methane-oxidizing communities by (15)N-labelling techniques. , 2008, FEMS microbiology ecology.

[74]  John M. Eiler,et al.  “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues , 2007 .

[75]  Richard B. Gaines,et al.  Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere , 2007, Proceedings of the National Academy of Sciences.

[76]  B. Thomas,et al.  Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina , 2007 .

[77]  B. Lollar,et al.  An approach for assessing total instrumental uncertainty in compound-specific carbon isotope analysis: implications for environmental remediation studies. , 2007, Analytical chemistry.

[78]  K. Nauhaus,et al.  In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. , 2007, Environmental microbiology.

[79]  Eoin L. Brodie,et al.  Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome , 2006, Science.

[80]  R. Seifert,et al.  Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro , 2006 .

[81]  J. Ward,et al.  The Origin and Age of Biogeochemical Trends in Deep Fracture Water of the Witwatersrand Basin, South Africa , 2006 .

[82]  J. Ward,et al.  Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface , 2006 .

[83]  T. Onstott,et al.  Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities , 2005 .

[84]  J. Ferry,et al.  Trace methane oxidation studied in several Euryarchaeota under diverse conditions. , 2005, Archaea.

[85]  T. Onstott,et al.  The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere , 2005 .

[86]  T. Hoehler Life’s Requirements, Habitability, and Biological Potential , 2005 .

[87]  J. Eiler,et al.  Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases , 2004 .

[88]  J. Ward,et al.  Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere 1 1 Associate editor: R. Summons , 2004 .

[89]  K. Knittel,et al.  Characterization of Specific Membrane Fatty Acids as Chemotaxonomic Markers for Sulfate-Reducing Bacteria Involved in Anaerobic Oxidation of Methane , 2003 .

[90]  James M. Thomas,et al.  Environmental isotopes in hydrogeology , 2003 .

[91]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[92]  Walter D. Mooney,et al.  Thermal thickness and evolution of Precambrian lithosphere: A global study , 2001 .

[93]  J. M. Hayes,et al.  Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments , 2001, Applied and Environmental Microbiology.

[94]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[95]  Michael J. Whiticar,et al.  Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , 1999 .

[96]  Jens Harder,et al.  Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide , 1997 .

[97]  W. Bleeker,et al.  Stratigraphy and U – Pb zircon geochronology of Kidd Creek: implications for the formation of giant volcanogenic massive sulphide deposits and the tectonic history of the Abitibi greenstone belt , 1996 .

[98]  B. Lollar,et al.  Microbial communities in deep Canadian shield groundwaters—an in situ biofilm experiment , 1995 .

[99]  D. Davis,et al.  U-Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits: syngenesis versus metamorphism , 1994 .

[100]  S. Macko,et al.  Abiogenic methanogenesis in crystalline rocks , 1993 .

[101]  S. Macko,et al.  Evidence for bacterially generated hydrocarbon gas in Canadian shield and Fennoscandian shield rocks , 1993 .

[102]  A. M. Goodwin Chapter 1 – Distribution and Tectonic Setting of Precambrian Crust , 1991 .

[103]  Martin Schoell,et al.  Multiple origins of methane in the Earth , 1988 .

[104]  Michael J. Whiticar,et al.  Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence , 1986 .

[105]  J. Springer Carbon in Archean rocks of the Abitibi belt (Ontario–Quebec) and its relation to gold distribution , 1985 .

[106]  F. Wellmer,et al.  Anomalous 13C depletion in early Precambrian graphites from Superior Province, Canada , 1981, Nature.

[107]  G. Eglinton Petroleum geochemistry and geology , 1980 .

[108]  P. Slack Variance of Terrestrial Heat Flow between the North American Craton and the Canadian Shield , 1974 .