Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1−xZrxO2−δ) solid solutions

[1]  S. Bishop,et al.  Reducing the chemical expansion coefficient in ceria by addition of zirconia , 2013 .

[2]  S. Hashimoto,et al.  Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4CoO3−δ , 2013 .

[3]  S. Bishop,et al.  Defects and transport in Pr_xCe_1−xO_2−δ: Composition trends , 2012 .

[4]  S. Abanades,et al.  Dopant Incorporation in Ceria for Enhanced Water-Splitting Activity during Solar Thermochemical Hydrogen Generation , 2012 .

[5]  Jeong-Rang Kim,et al.  Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support , 2012 .

[6]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[7]  J. Rupp Ionic diffusion as a matter of lattice-strain for electroceramic thin films , 2012 .

[8]  M. Gentleman,et al.  Raman Spectroscopic Observations of Ferroelastic Switching in Ceria‐Stabilized Zirconia , 2011 .

[9]  J. Martynczuk,et al.  Crystallization and Microstructure of Yttria‐Stabilized‐Zirconia Thin Films Deposited by Spray Pyrolysis , 2011 .

[10]  M. Boaro,et al.  Study on Redox, Structural and Electrical Properties of Ce x Zr1 − x O2 for Applications in SOFC Anodes , 2011 .

[11]  L. Gauckler,et al.  Engineering disorder in precipitation-based nano-scaled metal oxide thin films. , 2010, Physical chemistry chemical physics : PCCP.

[12]  Jee-Gong Chang,et al.  Oxygen vacancy formation and migration in Ce(1-x)Zr(x)O2 catalyst: a DFT+U calculation. , 2010, The Journal of chemical physics.

[13]  G. Lu,et al.  Maximizing the localized relaxation: the origin of the outstanding oxygen storage capacity of kappa-Ce2Zr2O8. , 2009, Angewandte Chemie.

[14]  E. Wachsman,et al.  Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide , 2009 .

[15]  L. Colombo,et al.  First-principles study of the structural and elastic properties of zirconia , 2009 .

[16]  Takashi Nakamura,et al.  Oxygen nonstoichiometry and chemical stability of Nd2−xSrxNiO4+δ , 2009 .

[17]  Ferdi Schüth,et al.  Handbook of Heterogeneous Catalysis. 2nd Edition , 2008 .

[18]  L. Gauckler,et al.  Thermodynamic Stability of Gadolinia-Doped Ceria Thin Film Electrolytes for Micro-Solid Oxide Fuel Cells , 2007 .

[19]  R. Gorte,et al.  Oxidation entropies and enthalpies of ceria–zirconia solid solutions , 2007 .

[20]  H. Matsumoto,et al.  Nonstoichiometry of the perovskite-type solid solution La0.9Ca0.1Cr1−yAlyO3−δ , 2006 .

[21]  J. Vohs,et al.  Thermodynamic investigation of the redox properties of ceria-zirconia solid solutions , 2006 .

[22]  K. Hermansson,et al.  Effects of Zr doping on stoichiometric and reduced ceria: a first-principles study. , 2006, The Journal of chemical physics.

[23]  J. C. Hernández,et al.  Redox Behavior of Thermally Aged Ceria−Zirconia Mixed Oxides. Role of Their Surface and Bulk Structural Properties , 2006 .

[24]  J. Hanson,et al.  Phases in Ceria–Zirconia Binary Oxide (1−x)CeO2–xZrO2 Nanoparticles: The Effect of Particle Size , 2006 .

[25]  R. O. Fuentes,et al.  Synchrotron X-ray diffraction study of the tetragonal-cubic phase boundary of nanocrystalline ZrO2-CeO2 synthesized by a gel-combustion process , 2005 .

[26]  J. Vohs,et al.  Enhanced Thermal Stability of SOFC Anodes Made with CeO2 - ZrO2 Solutions , 2005 .

[27]  J. Kašpar,et al.  Heterogeneous environmental catalysis – a gentle art: CeO2–ZrO2 mixed oxides as a case history , 2005 .

[28]  H. Matsumoto,et al.  Oxygen nonstoichiometry of the perovskite-type oxide La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3) , 2004 .

[29]  J. Kašpar,et al.  Laser-Excited Luminescence of Trivalent Lanthanide Impurities and Local Structure in CeO2−ZrO2 Mixed Oxides , 2004 .

[30]  J. Kašpar,et al.  On the Role of Oxygen Storage in Three-Way Catalysis , 2004 .

[31]  G. Busca,et al.  Characterization of cubic ceria–zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy , 2003 .

[32]  M. Yashima,et al.  High-temperature neutron powder diffraction study of cerium dioxide CeO2 up to 1770 K , 2003 .

[33]  J. Hanson,et al.  Properties of CeO2 and Ce1-xZrxO2 Nanoparticles: X-ray Absorption Near-Edge Spectroscopy, Density Functional, and Time-Resolved X-ray Diffraction Studies , 2003 .

[34]  H. Yokokawa,et al.  Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk , 2002 .

[35]  T. Nonaka,et al.  X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr=1) , 2002 .

[36]  René Guinebretière,et al.  Polarized Raman spectra of tetragonal pure ZrO 2 measured on epitaxial films , 2002 .

[37]  Byoung-Gyu Kim,et al.  Electrical conductivity and defect structure of CeO2-ZrO2 mixed oxide , 2002 .

[38]  Thomas O. Mason,et al.  Electrical and oxygen storage/release properties of nanocrystalline ceria-zirconia solid solutions , 2002 .

[39]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[40]  Jung Sub Kim,et al.  Electrical conductivity and defect structure of yttria-doped ceria-stabilized zirconia , 2001 .

[41]  Christopher M Wolverton,et al.  Defect ordering in aliovalently doped cubic zirconia from first principles , 2001 .

[42]  E. Longo,et al.  Effect of ceria content on the sintering of ZrO2 based ceramics synthesized from a polymeric precursor , 2000 .

[43]  K. Kawamura,et al.  Nonstoichiometry of Zr 0.l64 Ce 0.654 Y 0.l82 O 1.91- δ , 2000 .

[44]  M. Pijolat,et al.  Thermodynamic description of the nonstoichiometric defect structure in Ce1−xZrxO2 solid solution powders , 2000 .

[45]  M. Pijolat,et al.  Textural and phase stability of CexZr1−xO2 mixed oxides under high temperature oxidising conditions , 1999 .

[46]  L. Gauckler,et al.  Nonstoichiometry and Defect Chemistry of Ceria Solid Solutions , 1997 .

[47]  J. Kašpar,et al.  COMPUTER SIMULATION STUDIES OF BULK REDUCTION AND OXYGEN MIGRATION IN CEO2-ZRO2 SOLID SOLUTIONS , 1997 .

[48]  G. Flor,et al.  Electrical properties of the ZrO2-CeO2 system , 1996 .

[49]  Nakajima,et al.  Defect-induced Raman spectra in doped CeO2. , 1994, Physical review. B, Condensed matter.

[50]  W. Weber,et al.  Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb , 1994 .

[51]  Masahiro Yoshimura,et al.  Raman Scattering Study of Cubic–Tetragonal Phase Transition in Zr1−xCexO2 Solid Solution , 1994 .

[52]  R. Reidy,et al.  Electrical conductivity and point defect behavior in ceria-stabilized zirconia , 1993 .

[53]  J. Mizusaki,et al.  Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ , 1984 .

[54]  Harry L. Tuller,et al.  Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals , 1979 .

[55]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[56]  R. J. Panlener,et al.  A thermodynamic study of nonstoichiometric cerium dioxide , 1975 .

[57]  H. Rossell,et al.  A microdomain description of defective fluorite-type phasesCaxM1−xO2−x(M =Zr, Hf; x = 0.1–0.2) , 1975 .

[58]  J. Sanz,et al.  Structural characterization of Ce1−xZrxO2 (0 ≤ x ≤ 1) samples prepared at 1650 °C by solid state reaction: A combined TEM and XRD study , 2007 .

[59]  Eric D. Wachsman,et al.  Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides , 2004 .

[60]  G. Busca,et al.  Vibrational and electronic spectroscopic properties of zirconia powders , 2001 .

[61]  M. Kakihana,et al.  Determination of tetragonal-cubic phase boundary of Zr1-XRXO2-X/2 (R = Nd, Sm, Y, Er and Yb) BY Raman scattering , 1996 .

[62]  J. Echigoya,et al.  Structure and Phase Diagram of ZrO 2 –CeO 2 Ceramics , 1988 .

[63]  Harry L. Tuller,et al.  Small polaron electron transport in reduced CeO2 single crystals , 1977 .