Membrane insertion of a Tc toxin in near-atomic detail

Tc toxins from pathogenic bacteria use a special syringe-like mechanism to perforate the host cell membrane and inject a deadly enzyme into the host cytosol. The molecular mechanism of this unusual injection system is poorly understood. Using electron cryomicroscopy, we determined the structure of TcdA1 from Photorhabdus luminescens embedded in lipid nanodiscs. In our structure, compared with the previous structure of TcdA1 in the prepore state, the transmembrane helices rearrange in the membrane and open the initially closed pore. However, the helices do not span the complete membrane; instead, the loops connecting the helices form the rim of the funnel. Lipid head groups reach into the space between the loops and consequently stabilize the pore conformation. The linker domain is folded and packed into a pocket formed by the other domains of the toxin, thereby considerably contributing to stabilization of the pore state.

[1]  B. Krantz,et al.  Charge Requirements for Proton Gradient-driven Translocation of Anthrax Toxin* , 2011, The Journal of Biological Chemistry.

[2]  H. Dyson,et al.  Linking folding and binding. , 2009, Current opinion in structural biology.

[3]  R. ffrench-Constant,et al.  The tc genes of Photorhabdus: a growing family. , 2001, Trends in microbiology.

[4]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[5]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[6]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[7]  Gunnar von Heijne,et al.  Mechanisms of integral membrane protein insertion and folding. , 2015, Journal of molecular biology.

[8]  Aleksey Porollo,et al.  PROTEINS: Structure, Function, and Bioinformatics 56:753–767 (2004) Accurate Prediction of Solvent Accessibility Using Neural Networks–Based Regression , 2022 .

[9]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[10]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[11]  Robert J Collier,et al.  Atomic structure of anthrax protective antigen pore elucidates toxin translocation , 2015 .

[12]  Pablo Chacón,et al.  iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. , 2013, Journal of structural biology.

[13]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[14]  Garib N. Murshudov,et al.  Conformation-independent structural comparison of macromolecules with ProSMART , 2014, Acta crystallographica. Section D, Biological crystallography.

[15]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[16]  V. Ramakrishnan,et al.  Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome , 2014, Cell.

[17]  Michael Lappe,et al.  CMView: Interactive contact map visualization and analysis , 2011, Bioinform..

[18]  R. ffrench-Constant,et al.  A nematode symbiont sheds light on invertebrate immunity. , 2007, Trends in parasitology.

[19]  Nathan A. Baker,et al.  APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane , 2010, PloS one.

[20]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[21]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[22]  Stefan Raunser,et al.  Mechanism of Tc toxin action revealed in molecular detail , 2014, Nature.

[23]  H. Mannherz,et al.  Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering , 2010, Science.

[24]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[25]  C. J. Chapman,et al.  Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system. , 1994, Biophysical journal.

[26]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[27]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[28]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[29]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[30]  Pawel A Penczek,et al.  Iterative stable alignment and clustering of 2D transmission electron microscope images. , 2012, Structure.

[31]  R. ffrench-Constant,et al.  Insecticidal toxins from the bacterium Photorhabdus luminescens. , 1998, Science.

[32]  C. Lesieur,et al.  Membrane insertion: The strategies of toxins (review). , 1997, Molecular membrane biology.

[33]  J. Lott,et al.  The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device , 2013, Nature.

[34]  Stefan Raunser,et al.  A syringe-like injection mechanism in Photorhabdus luminescens toxins , 2013, Nature.

[35]  M. Soberón,et al.  How to cope with insect resistance to Bt toxins? , 2008, Trends in biotechnology.

[36]  Helmut Grubmüller,et al.  Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS , 2011, Journal of chemical theory and computation.

[37]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[38]  John A. Young,et al.  Anthrax toxin: receptor binding, internalization, pore formation, and translocation. , 2007, Annual review of biochemistry.

[39]  S. Scheres Beam-induced motion correction for sub-megadalton cryo-EM particles , 2014, eLife.

[40]  J. Murphy Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process , 2011, Toxins.

[41]  Rosalba Rothnagel,et al.  3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity , 2011, Proceedings of the National Academy of Sciences.

[42]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[43]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[44]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[45]  Ruedi Aebersold,et al.  Architecture and conformational switch mechanism of the ryanodine receptor , 2014, Nature.

[46]  Nagasuma R. Chandra,et al.  CHEXVIS: a tool for molecular channel extraction and visualization , 2015, BMC Bioinformatics.

[47]  Gerhard Hummer,et al.  This is an open-access article distributed under the terms of the Creative Commons Public Domain declara... , 2008 .

[48]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[50]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[51]  Mirko Bischofberger,et al.  Structure and assembly of pore-forming proteins. , 2010, Current opinion in structural biology.

[52]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[53]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[54]  B. Krantz,et al.  Ratcheting up protein translocation with anthrax toxin , 2012, Protein science : a publication of the Protein Society.

[55]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[56]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[57]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[58]  D. Vlazny,et al.  Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein , 1994, Molecular microbiology.