Partially traced categories

This paper deals with questions relating to Haghverdi and Scott’s notion of partially traced categories. The main result is a representation theorem for such categories: we prove that every partially traced category can be faithfully embedded in a totally traced category. Also conversely, every symmetric monoidal subcategory of a totally traced category is partially traced, so this characterizes the partially traced categories completely. The main technique we use is based on Freyd’s paracategories, along with a partial version of Joyal, Street, and Verity’s Int-construction.

[1]  Ross Street,et al.  Traced monoidal categories , 1996 .

[2]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[3]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[4]  S. Lane Categories for the Working Mathematician , 1971 .

[5]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[6]  J. Girard Geometry of interaction III: accommodating the additives , 1995 .

[7]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[8]  Octavio Malherbe,et al.  Categorical models of computation: partially traced categories and presheaf models of quantum computation , 2013, 1301.5087.

[9]  Philip J. Scott,et al.  Geometry of Interaction and the Dynamics of Proof Reduction: A Tutorial , 2010 .

[10]  H. Jarchow,et al.  On Trace Ideals , 1982 .

[11]  Daniele Gorla,et al.  Preface to special issue: Expressiveness in Concurrency 2008 , 2010, Math. Struct. Comput. Sci..

[12]  Martin Hyland,et al.  Glueing and orthogonality for models of linear logic , 2003, Theor. Comput. Sci..

[13]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[14]  Masahito Hasegawa,et al.  On traced monoidal closed categories , 2009, Mathematical Structures in Computer Science.

[15]  Claudio Hermida,et al.  Paracategories I: internal paracategories and saturated partial algebras , 2003, Theor. Comput. Sci..

[16]  Esfandiar Haghverdi,et al.  Typed GoI for Exponentials , 2006, ICALP.

[17]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[18]  Philip J. Scott,et al.  Towards a typed Geometry of Interaction , 2005, Mathematical Structures in Computer Science.

[19]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[20]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[21]  Jean-Yves Girard,et al.  Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..

[22]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[23]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .