Ldi tree: a sampling rate preserving and hierarchical data representation for image-based rendering

Multiple reference images are required to eliminate disocclusion artifacts in image-based rendering based on McMillan's 3D image warping. Simply warping each individual reference image causes the rendering time to grow linearly with the number of reference images. This calls for a new data representation for merging multiple reference images. In this dissertation I present a hierarchical data representation, the LDI Tree, for merging reference images. It is distinguished from previous works by identifying the sampling rate issue and preserving the sampling rates of the reference images by adaptively selecting a suitable level in the hierarchy for each pixel. During rendering, the traversal of the LDI Tree is limited to the levels that are comparable to the sampling rate of the output image. This allows the rendering time to be driven by the requirements of output images instead of the number of input images. I also present a progressive refinement feature and a hole-filling algorithm implemented by pre-filtering the LDI Tree. I show that the amount of memory required has the same order of growth as the 2D reference images in the worst case. I also show that the rendering time depends mostly on the quality of the output image, while the number of reference images has a relatively small impact. iv To my wife, my parents, and my grandparents. v ACKNOWLEDGEMENTS

[1]  Nelson L. Max,et al.  Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers , 1996, Rendering Techniques.

[2]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[3]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[4]  Leonard McMillan,et al.  A List-Priority Rendering Algorithm for Redisplaying Projected Surfaces , 1995 .

[5]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[6]  Gernot Schaufler,et al.  Efficient displacement Mapping by Image Warping , 1999, Rendering Techniques.

[7]  Wolfgang Stuerzlinger,et al.  Imaging all Visible Surfaces , 1999, Graphics Interface.

[8]  Joel McCormack,et al.  Feline: fast elliptical lines for anisotropic texture mapping , 1999, SIGGRAPH.

[9]  C. Ian Connolly,et al.  Cumulative generation of octree models from range data , 1984, ICRA.

[10]  Anselmo Lastra,et al.  LDI tree: a hierarchical representation for image-based rendering , 1999, SIGGRAPH.

[11]  Dinesh Manocha,et al.  Hierarchical levels of detail to accelerate the rendering of large static and dynamic polygonal environments , 2000 .

[12]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[13]  Paul Rademacher,et al.  Multiple-center-of-projection images , 1998, SIGGRAPH.

[14]  J. K. Aggarwal,et al.  Generation of volume/surface octree from range data , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[16]  Robert W. Marcato Optimizing an inverse warper , 1998 .

[17]  Daniel G. Aliaga,et al.  Architectural walkthroughs using portal textures , 1997 .

[18]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[19]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[20]  Anselmo Lastra,et al.  Architectural walkthroughs using portal textures , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[21]  Leonard McMillan,et al.  Post-rendering 3D warping , 1997, SI3D.

[22]  Gernot Schaufler Per-Object Image Warping with Layered Impostors , 1998, Rendering Techniques.

[23]  Dinesh Manocha,et al.  Visibility culling using hierarchical occlusion maps , 1997, SIGGRAPH.

[24]  Chun-Fa Chang,et al.  Z 3 : an economical hardware technique for high-quality antialia , 1999 .

[25]  Wolfgang Stuerzlinger,et al.  A Three Dimensional Image Cache for Virtual Reality , 1996, Comput. Graph. Forum.

[26]  Norman P. Jouppi,et al.  Z3: an economical hardware technique for high-quality antialiasing and transparency , 1999, Workshop on Graphics Hardware.

[27]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[28]  Voicu Popescu,et al.  Interactive exploration of acquired 3D data , 2000, Applied Imaging Pattern Recognition.

[29]  Loren C. Carpenter,et al.  The A -buffer, an antialiased hidden surface method , 1984, SIGGRAPH.

[30]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[31]  An Li,et al.  Octree encoding of objects from range images , 1994, Pattern Recognit..

[32]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[33]  David Salesin,et al.  Hierarchical image caching for accelerated walkthroughs of complex environments , 1996, SIGGRAPH.

[34]  Gavin S. P. Miller,et al.  Hierarchical Z-buffer visibility , 1993, SIGGRAPH.

[35]  Dani Lischinski,et al.  Image-Based Rendering for Non-Diffuse Synthetic Scenes , 1998, Rendering Techniques.

[36]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[37]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[38]  Lee Westover,et al.  Splatting: a parallel, feed-forward volume rendering algorithm , 1991 .

[39]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[40]  William R. Mark,et al.  Post-Rendering 3D Image Warping: Visibility, Reconstruction, and Performance for Depth-Image Warping , 1999 .

[41]  Lance Williams,et al.  Pyramidal parametrics , 1983, SIGGRAPH.

[42]  Jr. Leonard McMillan,et al.  An Image-Based Approach to Three-Dimensional Computer Graphics , 1997 .

[43]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.