Multi-modal analysis on the intermittent contact dynamics of atomic force microscope

A multi-modal analysis on the intermittent contact between an atomic force microscope (AFM) with a soft sample is presented. The intermittent contact induces the participation of the higher modes into the motion and various subharmonic motions are shown. The AFM tip mass enhances the coupling of different modes. The AFM tip mass is modeled by the Dirac delta function and the coupling effects are analyzed via the Galerkin method. The necessity of applying multi-modal analysis to the intermittent contact problem is demonstrated. Unlike the impact oscillator model which assumes the impact/contact time is infinitesimal, the contact time can be a significant fractional portion in each cycle, especially for the soft sample case and thus results in different dynamic behavior from that of an impact oscillator. (C) 2011 Elsevier Ltd. All rights reserved.

[1]  G. Briggs,et al.  Nonlinear dynamics of intermittent-contact mode atomic force microscopy , 1997 .

[2]  M. Rutland,et al.  Dynamic surface force measurement. I. van der Waals collisions , 1998 .

[3]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[4]  Steven W. Shaw,et al.  Forced vibrations of a beam with one-sided amplitude constraint: Theory and experiment , 1985 .

[5]  C. D. Mote,et al.  Linear transverse vibration of an axially moving string–particle system , 1988 .

[6]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[7]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[8]  R. Ibrahim Book Reviews : Nonlinear Oscillations: A.H. Nayfeh and D.T. Mook John Wiley & Sons, New York, New York 1979, $38.50 , 1981 .

[9]  H. Hölscher,et al.  Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy , 1999 .

[10]  L. Nony,et al.  Nonlinear dynamical properties of an oscillating tip–cantilever system in the tapping mode , 1999, physics/0510099.

[11]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[12]  Lawrence N. Virgin,et al.  Introduction to Experimental Nonlinear Dynamics , 2000 .

[13]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[14]  K. D. Murphy,et al.  Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope , 2010 .

[15]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[16]  Pascal Gallo,et al.  How does a tip tap? , 1997 .

[17]  Sebastian Rützel,et al.  Nonlinear dynamics of atomic–force–microscope probes driven in Lennard–Jones potentials , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  A. Volokitin,et al.  Adsorbate-induced enhancement of electrostatic noncontact friction. , 2005, Physical review letters.

[19]  Lawrence N. Virgin,et al.  An experimental impact oscillator , 1997 .

[20]  N. Thomson,et al.  Energy dissipation in a dynamic nanoscale contact , 2011 .

[21]  Kevin D. Murphy,et al.  Response of a finite beam in contact with a tensionless foundation under symmetric and asymmetric loading , 2004 .

[22]  Natalia Erina,et al.  High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy , 2008, Nanotechnology.

[23]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[24]  Steven W. Shaw,et al.  Periodically forced linear oscillator with impacts: Chaos and long-period motions , 1983 .

[25]  J. Molenaar,et al.  Dynamics of vibrating atomic force microscopy , 2000 .

[26]  Burnham,et al.  Nanosubharmonics: The dynamics of small nonlinear contacts. , 1995, Physical review letters.

[27]  Harald Fuchs,et al.  Conservative and dissipative tip-sample interaction forces probed with dynamic AFM , 1999 .

[28]  Yin Zhang Extracting nanobelt mechanical properties from nanoindentation , 2010 .

[29]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[30]  Andrew E. Pelling,et al.  Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae , 2004, Science.

[31]  William H. Press,et al.  Numerical recipes , 1990 .

[32]  Ya-Pu Zhao,et al.  Nonlinear behavior for nanoscale electrostatic actuators with Casimir force , 2005 .

[33]  Ricardo Garcia,et al.  Dynamics of a vibrating tip near or in intermittent contact with a surface , 2000 .

[34]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[35]  B. Bhushan Scanning probe microscopy in nanoscience and nanotechnology , 2010 .

[36]  Kevin D. Murphy,et al.  VIBRATION AND STABILITY OF A CRACKED TRANSLATING BEAM , 2000 .

[37]  Alfred Brian Pippard,et al.  The physics of vibration , 1991 .

[38]  J. Gómez‐Herrero,et al.  Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. , 2011, Physical review letters.

[39]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[40]  R. Hayward Stress , 2005, The Lancet.

[41]  K. D. Murphy,et al.  Grazing instabilities and post-bifurcation behavior in an impacting string. , 2002, The Journal of the Acoustical Society of America.

[42]  K. D. Murphy,et al.  Coupling between dissimilar modes in an asymmetrically forced string , 1998 .