An O(n log n) Randomizing Algorithm for the Weighted Euclidean 1-Center Problem

Abstract A randomizing algorithm for the weighted Euclidean 1-center problem is presented. The algorithm is shown to run on any problem in O(nlogn) time with high probability.

[1]  Ronald L. Rivest,et al.  Expected time bounds for selection , 1975, Commun. ACM.

[2]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[3]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..

[4]  Martin E. Dyer,et al.  Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..

[5]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[6]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[7]  Nimrod Megiddo,et al.  The Weighted Euclidean 1-Center Problem , 1983, Math. Oper. Res..

[8]  Eitan Zemel,et al.  An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..

[9]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[10]  Richard L. Francis,et al.  Letter to the Editor - Some Aspects of a Minimax Location Problem , 1967, Oper. Res..

[11]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  K. Nair,et al.  Optimal location of a single service center of certain types , 1971 .

[13]  Donald E. Knuth,et al.  Mathematical Analysis of Algorithms , 1971, IFIP Congress.

[14]  D. Hearn,et al.  Geometrical Solutions for Some Minimax Location Problems , 1972 .

[15]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.

[16]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[17]  Nimrod Megiddo Linear-Time Algorithms for Linear Programming in R and Related Problems , 1983 .

[18]  P. K. Chaudhuri,et al.  Letter to the Editor---Note on Geometrical Solution for Some Minimax Location Problems , 1981 .

[19]  Arie Tamir,et al.  Optimization problems with algebraic solutions: Quadratic fractional programs and ratio games , 1984, Math. Program..

[20]  Donald W. Hearn,et al.  Efficient Algorithms for the (Weighted) Minimum Circle Problem , 1982, Oper. Res..

[21]  C. O. Oakley,et al.  The Enjoyment of Mathematics. , 1957 .

[22]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[23]  Richard D. Smallwood,et al.  Minimax Detection Station Placement , 1965 .

[24]  C. A. R. Hoare,et al.  Algorithm 65: find , 1961, Commun. ACM.

[25]  Martin Dyer,et al.  AN O(n) ALGORITHM FOR THE MULTIPLE-CHOICE , 2007 .

[26]  R. Courant,et al.  What Is Mathematics , 1943 .