Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis

In this paper we consider the nonparametric estimation of a regression function as well as of its derivatives by the kernel method. Strong uniform consistency properties are investigated under a general ergodic condition.

[1]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[2]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[3]  L. Devroye The uniform convergence of the nadaraya‐watson regression function estimate , 1978 .

[4]  T. Stengos,et al.  Nonparametric kernel estimation applied to forecasting: An evaluation based on the bootstrap , 1988 .

[5]  A. Ullah,et al.  Nonparametric estimation of response coefficients , 1989 .

[6]  D. Bosq,et al.  Nonparametric prediction of a Hilbert space valued random variable , 1985 .

[7]  E. F. Schuster Estimation of a Probability Density Function and Its Derivatives , 1969 .

[8]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[9]  László Györfi,et al.  The L, and L, Strong Consistency Kernel Density Estimation of Recursive from Dependent Samples , 1990 .

[10]  Adam Krzyzak,et al.  Distribution-free consistency of a nonparametric kernel regression estimate and classification , 1984, IEEE Trans. Inf. Theory.

[11]  L. Györfi Strong consistent density estimate from ergodic sample , 1981 .

[12]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[13]  P. Rilstone,et al.  Nonparametric Hypothesis Testing with Parametric Rates of Convergence , 1991 .

[14]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[15]  R. Karunamuni,et al.  Improvements on strong uniform consistency of some known kernel estimates of a density and its derivatives , 1990 .

[16]  Distributions : théorie et problèmes , 1973 .

[17]  Wolfgang Härdle,et al.  Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .

[18]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[19]  Gérard Collomb,et al.  Nonparametric regression: An up–to–date bibliography , 1985 .

[20]  R. Fraiman,et al.  Robust Nonparametric Regression Estimation for Dependent Observations , 1989 .

[21]  G. Collomb Propriétés de convergence presque complète du prédicteur à noyau , 1984 .

[22]  R. Singh Improvement on Some Known Nonparametric Uniformly Consistent Estimators of Derivatives of a Density , 1977 .

[23]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[24]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[25]  H. Bierens Advances in Econometrics: Kernel estimators of regression functions , 1987 .

[26]  M. Delecroix,et al.  Sur l'estimation de la densité d'observations ergodiques , 1991 .

[27]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[28]  Ali Gannoun Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle , 1991 .

[29]  G. Lugosi,et al.  Kernel density estimation from ergodic sample is not universally consistent , 1992 .

[30]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[31]  A. Ullah Nonparametric estimation and hypothesis testing in econometric models , 1988 .

[32]  S. Yakowitz Nonparametric Density Estimation, Prediction, and Regression for Markov Sequences , 1985 .

[33]  M. R. Leadbetter,et al.  On smoothed probability density estimation for stationary processes , 1986 .

[34]  R. Singh On necessary and sufficient conditions for uniform strong consistency of estimators of a density and its derivatives , 1979 .

[35]  Hrishikesh D. Vinod,et al.  Flexible Production Function Estimation by Nonparametric Kernel Estimators , 1987 .

[36]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[37]  S. Yakowitz Nonparametric density and regression estimation for Markov sequences without mixing assumptions , 1989 .

[38]  R. Ash,et al.  Topics in stochastic processes , 1975 .

[39]  K. K. Vo,et al.  Distributions, analyse de Fourier, opérateurs aux dérivées partielles , 1972 .

[40]  M. Delecroix,et al.  Non‐parametric vs parametric forecasting in time series: A computational point of view , 1993 .

[41]  W. Härdle,et al.  A note on prediction via estimation of the conditional mode function , 1986 .

[42]  J. V. Ryzin,et al.  ON STRONG CONSISTENCY OF DENSITY ESTIMATES , 1969 .