Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming

[1]  B. Russell,et al.  FORECASTED CO2 MODIFIES THE INFLUENCE OF LIGHT IN SHAPING SUBTIDAL HABITAT 1 , 2011, Journal of phycology.

[2]  A. Richardson,et al.  Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming , 2011 .

[3]  D. Schiel Biogeographic patterns and long-term changes on New Zealand coastal reefs: Non-trophic cascades from diffuse and local impacts , 2011 .

[4]  C. Harley,et al.  Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems , 2011 .

[5]  P. C. Reid,et al.  Impacts of climate change on European marine ecosystems: Observations, expectations and indicators , 2011 .

[6]  C. Harley,et al.  Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana) , 2011 .

[7]  G. Hosie,et al.  Climate change cascades: Shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania , 2011 .

[8]  B. Russell,et al.  Can strong consumer and producer effects be reconciled to better forecast 'catastrophic' phase-shifts in marine ecosystems? , 2011 .

[9]  G. Kendrick,et al.  Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature , 2011 .

[10]  S. Kjelleberg,et al.  Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. , 2011, Environmental microbiology.

[11]  G. Edgar,et al.  Long‐term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices , 2011 .

[12]  E. Harvey,et al.  From fronds to fish: the use of indicators for ecological monitoring in marine benthic ecosystems, with case studies from temperate Western Australia , 2011, Reviews in Fish Biology and Fisheries.

[13]  J. West,et al.  Australia's marine biogeography revisited: Back to the future? , 2010 .

[14]  A. Hobday,et al.  Climate-driven range changes in Tasmanian intertidal fauna , 2010 .

[15]  Laura J. Falkenberg,et al.  Sustainability in near-shore marine systems: promoting natural resilience , 2010 .

[16]  S. Dupont,et al.  Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[17]  G. Kendrick,et al.  Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. , 2010, Ecology letters.

[18]  B. Russell,et al.  The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests , 2010, Proceedings of the Royal Society B: Biological Sciences.

[19]  G. Kendrick,et al.  Assemblage turnover and taxonomic sufficiency of subtidal macroalgae at multiple spatial scales , 2010 .

[20]  B. Russell,et al.  Honing the geoengineering strategy. , 2010, Science.

[21]  G. Edgar,et al.  Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming , 2010 .

[22]  Nick Caputi,et al.  The effect of climate change on the western rock lobster (Panulirus cygnus) fishery of Western Australia , 2010 .

[23]  Richard C. Thompson,et al.  Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores , 2009 .

[24]  S. Gaines,et al.  Geographical patterns of genetic structure in marine species with contrasting life histories , 2009 .

[25]  B. Russell,et al.  Eutrophication science: moving into the future. , 2009, Trends in ecology & evolution.

[26]  Laura J. Falkenberg,et al.  Synergistic effects of climate change and local stressors: CO2 and nutrient‐driven change in subtidal rocky habitats , 2009 .

[27]  W. O'Connor,et al.  The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850) , 2009 .

[28]  J. Gattuso,et al.  Response of Mediterranean coralline algae to ocean acidification and elevated temperature , 2009 .

[29]  T. Wernberg,et al.  Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology , 2009 .

[30]  B. Russell,et al.  Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. , 2009, Ecological applications : a publication of the Ecological Society of America.

[31]  C. Harley,et al.  Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm , 2009, Proceedings of the National Academy of Sciences.

[32]  Maria Byrne,et al.  Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios , 2009, Proceedings of the Royal Society B: Biological Sciences.

[33]  D. Booth,et al.  Ontogeny of space use and diet of two temperate damselfish species, Parma microlepis and Parma unifasciata , 2009 .

[34]  M. Haddon,et al.  Climate‐driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics , 2009 .

[35]  Neville S. Barrett,et al.  Changes in invertebrate and macroalgal populations in Tasmanian marine reserves in the decade following protection , 2009 .

[36]  T. Wernberg,et al.  PHYSIOLOGICAL RESPONSES OF ECKLONIA RADIATA (LAMINARIALES) TO A LATITUDINAL GRADIENT IN OCEAN TEMPERATURE 1 , 2009, Journal of phycology.

[37]  M. O’Connor Warming strengthens an herbivore-plant interaction. , 2009, Ecology.

[38]  E. Sotka,et al.  Seawater Temperature Alters Feeding Discrimination by Cold-Temperate but not Subtropical Individuals of an Ectothermic Herbivore , 2009, The Biological Bulletin.

[39]  Craig R. Johnson,et al.  Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens , 2009 .

[40]  S. D. Linga,et al.  Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift , 2009 .

[41]  Wahl. Martin Marine Hard Bottom Communities , 2009 .

[42]  L. Peck,et al.  Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis , 2008 .

[43]  F. Tuya,et al.  Testing the `abundant centre' hypothesis on endemic reef fishes in south-western Australia , 2008 .

[44]  J. Forester,et al.  Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset , 2008, Proceedings of the National Academy of Sciences.

[45]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[46]  Richard C. Thompson,et al.  Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change , 2008 .

[47]  S. Connell,et al.  Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia , 2008 .

[48]  S. Siikavuopio,et al.  Effects of body weight and temperature on feed intake, gonad growth and oxygen consumption in green sea urchin, Strongylocentrotus droebachiensis , 2008 .

[49]  T. Wernberg,et al.  Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity , 2008 .

[50]  A. Millar,et al.  ABSENCE OF A LARGE BROWN MACROALGA ON URBANIZED ROCKY REEFS AROUND SYDNEY, AUSTRALIA, AND EVIDENCE FOR HISTORICAL DECLINE 1 , 2008, Journal of phycology.

[51]  F. Tuya,et al.  The spatial arrangement of reefs alters the ecological patterns of fauna between interspersed algal habitats , 2008 .

[52]  Emma Ransome,et al.  Volcanic carbon dioxide vents show ecosystem effects of ocean acidification , 2008, Nature.

[53]  T. Wernberg,et al.  Population structure of turbinid gastropods on wave-exposed subtidal reefs: Effects of density, body size and algae on grazing behaviour , 2008 .

[54]  A. Richardson,et al.  Under-Resourced, Under Threat , 2008, Science.

[55]  L. Airoldi,et al.  Recovering a lost baseline: missing kelp forests from a metropolitan coast , 2008 .

[56]  S. Ling,et al.  Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state , 2008, Oecologia.

[57]  C. Rosenzweig,et al.  Attributing physical and biological impacts to anthropogenic climate change , 2008, Nature.

[58]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[59]  J. Pandolfi,et al.  Escaping the heat: range shifts of reef coral taxa in coastal Western Australia , 2008 .

[60]  F. Mackenzie,et al.  Decreased abundance of crustose coralline algae due to ocean acidification , 2008 .

[61]  T. Wernberg,et al.  Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass , 2008 .

[62]  C. Son Reproductive potential of a marine ecosystem engineer at the edge of a newly expanded range , 2008 .

[63]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[64]  M. Feng,et al.  Observations of warming on the Western Australian continental shelf , 2007 .

[65]  Stuart Banks,et al.  Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity , 2007, Proceedings of the National Academy of Sciences.

[66]  E. Harvey,et al.  Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests , 2007 .

[67]  K. Ridgway Long‐term trend and decadal variability of the southward penetration of the East Australian Current , 2007 .

[68]  W. Watson,et al.  Endogenous rhythms of locomotion in the American horseshoe crab, Limulus polyphemus , 2007 .

[69]  D. Bellwood,et al.  Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change , 2007, Current Biology.

[70]  S. Lester,et al.  Disease dynamics and the potential role of thermal stress in the sea urchin, Strongylocentrotus purpuratus , 2007 .

[71]  W. Collins,et al.  Global climate projections , 2007 .

[72]  Neil L. Andrew,et al.  Ecology of Centrostephanus , 2007 .

[73]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[74]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[75]  O. Hoegh‐Guldberg,et al.  Climate change and Australian marine life , 2007 .

[76]  P. Mccarthy,et al.  Algae of Australia: introduction. , 2007 .

[77]  D. Barnes,et al.  Disturbance, colonization and development of Antarctic benthic communities , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  B. Helmuth,et al.  Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change , 2006 .

[79]  B. Menge,et al.  MOSAIC PATTERNS OF THERMAL STRESS IN THE ROCKY INTERTIDAL ZONE: IMPLICATIONS FOR CLIMATE CHANGE , 2006 .

[80]  A. Richardson,et al.  Impacts of climate change on Australian marine life: part A: executive summary, part B: technical report, and part C: literature review , 2006 .

[81]  A. Kerswell Global biodiversity patterns of benthic marine algae. , 2006, Ecology.

[82]  Susan L. Williams,et al.  Erratum: The impacts of climate change in coastal marine systems (Ecology Letters (2006) 9 (228-241)) , 2006 .

[83]  H. Christie,et al.  Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta , 2006 .

[84]  T. Wernberg Scale of impact determines early post-disturbance assemblage structure in subtidal Fucus beds in the Baltic Sea (Bornholm, Denmark) , 2006 .

[85]  A. Richardson,et al.  Impacts of climate change on Australian marine life: part A : executive summary , 2006 .

[86]  Craig R. Johnson,et al.  Establishment of the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential threats to fisheries , 2005 .

[87]  S. Pennings,et al.  LINKING BIOGEOGRAPHY AND COMMUNITY ECOLOGY: LATITUDINAL VARIATION IN PLANT–HERBIVORE INTERACTION STRENGTH , 2005 .

[88]  G. Edgar,et al.  Species Extinction in the Marine Environment: Tasmania as a Regional Example of Overlooked Losses in Biodiversity , 2005 .

[89]  George Sugihara,et al.  Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean , 2005, Nature.

[90]  B. Russell,et al.  A novel interaction between nutrients and grazers alters relative dominance of marine habitats , 2005 .

[91]  T. Elsdon,et al.  Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment , 2005 .

[92]  Richard C. Thompson,et al.  Marine biodiversity and climate change: assessing and predicting the influence of climatic change using intertidal rocky shore biota , 2005 .

[93]  K. Lafferty,et al.  ARE DISEASES INCREASING IN THE OCEAN , 2004 .

[94]  C. Johnson,et al.  Establishment of the introduced kelp Undaria pinnatifida following dieback of the native macroalga Phyllospora comosa in Tasmania, Australia , 2004 .

[95]  C. Johnson,et al.  Interaction and impacts of two introduced species on a soft-sediment marine assemblage in SE Tasmania , 2004 .

[96]  S. Connell,et al.  Expansive covers of turf-forming algae on human-dominated coast: the relative effects of increasing nutrient and sediment loads , 2004 .

[97]  K. Benkendorff,et al.  Identifying hotspots of molluscan species richness on rocky intertidal reefs , 2002, Biodiversity & Conservation.

[98]  J. Phillips Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? , 2001, Biodiversity & Conservation.

[99]  T. Motomura,et al.  Pathogenic bacteria associated with lesions and thallus bleaching symptoms in the Japanese kelp Laminaria religiosa Miyabe (Laminariales, Phaeophyceae) , 2001, Hydrobiologia.

[100]  E. Harvey,et al.  The role of disturbance in maintaining diversity of benthic macroalgal assemblages in southwestern Australia , 2004 .

[101]  G. Kendrick,et al.  The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata , 2004 .

[102]  G. Kendrick,et al.  Influence of Ecklonia radiata kelp canopy on structure of macro-algal assemblages in Marmion Lagoon, Western Australia , 1999, Hydrobiologia.

[103]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[104]  G. Kendrick,et al.  Regional differences in kelp‐associated algal assemblages on temperate limestone reefs in south‐western Australia , 2003 .

[105]  R. Thresher,et al.  Invasion dynamics of the European shore crab, Carcinus maenas, in Australia , 2003 .

[106]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[107]  J. Stachowicz,et al.  Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Mark D. Bertness,et al.  Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes , 2002, Oecologia.

[109]  B. K. Eriksson,et al.  LONG‐TERM CHANGES IN THE MACROALGAL VEGETATION OF THE INNER GULLMAR FJORD, SWEDISH SKAGERRAK COAST1 , 2002 .

[110]  J. Lubchenco,et al.  Inter-hemispheric comparison of bottom-up effects on community structure: Insights revealed using the comparative-experimental approach , 2002, Ecological Research.

[111]  R. Steneck,et al.  THERMOGEOGRAPHY OVER TIME CREATES BIOGEOGRAPHIC REGIONS: A TEMPERATURE/SPACE/TIME‐INTEGRATED MODEL AND AN ABUNDANCE‐WEIGHTED TEST FOR BENTHIC MARINE ALGAE , 2001 .

[112]  T. O’hara Consistency of faunal and floral assemblages within temperate subtidal rocky reef habitats , 2001 .

[113]  K. Bjorndal,et al.  Historical Overfishing and the Recent Collapse of Coastal Ecosystems , 2001, Science.

[114]  T. O’hara,et al.  Patterns of distribution for southern Australian marine echinoderms and decapods , 2000 .

[115]  J. Crame Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas , 2000, Paleobiology.

[116]  R. Cole,et al.  Using spatial pattern analysis to distinguish causes of mortality: an example from kelp in north‐eastern New Zealand , 1999 .

[117]  H. Lotze,et al.  Marine diversity shift linked to interactions among grazers, nutrients and propagule banks , 1999 .

[118]  M. Balarin,et al.  Effect of diet on growth rate and reproductive fitness of Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae) , 1999 .

[119]  J. Connell,et al.  Multiple stressors on coral reefs: A long ‐term perspective , 1999 .

[120]  R. Paine,et al.  Compounded Perturbations Yield Ecological Surprises , 1998, Ecosystems.

[121]  P. Whetton,et al.  Climate change under enhanced greenhouse conditions in Northern Australia , 1998 .

[122]  S. Beer,et al.  Biodiversity of Marine Plants in an Era of Climate Change: Some Predictions Based on Physiological Performance , 1998 .

[123]  M. Pedersen,et al.  Nutrient control of algal growth in estuarine waters: Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. , 1996 .

[124]  R. Cole,et al.  Mass mortality of a dominant kelp (Laminariales) at Goat Island, north-eastern New Zealand , 1996 .

[125]  S. Hawkins,et al.  Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature , 1995 .

[126]  J. Bolton Global Seaweed Diversity: Patterns and Anomalies , 1994 .

[127]  N. Andrew Changes in subtidal habitat following mass mortality of sea urchins in Botany Bay, New South Wales , 1991 .

[128]  Neil L. Andrew,et al.  Patterns in shallow subtidal marine assemblages along the coast of New South Wales , 1991 .

[129]  G. Edgar Predator-prey interactions in seagrass beds. III. Impacts of the western rock lobster Panulirus cygnus George on epifaunal gastropod populations , 1990 .

[130]  T. Farrell Succession in a rocky intertidal community; the importance of disturbance size and position within a disturbed patch , 1989 .

[131]  M. Tegner,et al.  Storm Wave Induced Mortality of Giant Kelp, Macrocystis pyrifera, in Southern , 1989 .

[132]  S. Kennelly Inhibition of kelp recruitment by turfing algae and consequences for an Australian kelp community , 1987 .

[133]  S. Kennelly Physical disturbances in an Australian kelp community. I. Temporal effects , 1987 .

[134]  R. Steneck The Ecology of Coralline Algal Crusts: Convergent Patterns and Adaptative Strategies , 1986 .

[135]  H. Kirkman Standing stock and production of Ecklonia radiata (C.Ag.): J. Agardh , 1984 .

[136]  W. Sousa Disturbance in Marine Intertidal Boulder Fields: The Nonequilibrium Maintenance of Species Diversity , 1979 .