Finite Element Runge-Kutta Discretizations of Porous Medium-Type Equations

In this paper we analyze the convergence properties of full discretizations of a class of generalized porous medium equations. For the spatial and time discretizations, we use continuous piecewise linear finite elements and algebraically stable Runge-Kutta methods, respectively. We prove our convergence result without any assumption on the spatial regularity. It is shown that, under a certain stability assumption, the temporal order of convergence is given by the stage order of the method, whereas the spatial order is essentially one. Numerical experiments illustrate our stability assumption and the convergence result.

[1]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[2]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[3]  Noel J. Walkington,et al.  Optimal rates of convergence for degenerate parabolic problems in two dimensions , 1996 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Carsten Ebmeyer,et al.  Error Estimates for a Class of Degenerate Parabolic Equations , 1998 .

[6]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[7]  Martin Vohralík,et al.  A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.

[8]  John W. Barrett,et al.  Finite Element Approximation of the Transport of Reactive Solutes in Porous Media. Part 1: Error Estimates for Nonequilibrium Adsorption Processes , 1997 .

[9]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[10]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[11]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[12]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[13]  Eskil Hansen,et al.  Runge-Kutta time discretizations of nonlinear dissipative evolution equations , 2005, Math. Comput..

[14]  JOHN W. BARRETT,et al.  FINITE ELEMENT APPROXIMATION OF THE TRANSPORT OF REACTIVE SOLUTES IN POROUS MEDIA. PART II: ERROR ESTIMATES FOR EQUILIBRIUM ADSORPTION PROCESSES∗ , 1997 .

[15]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[16]  J. Vázquez The Porous Medium Equation , 2006 .