Spin-it

Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. We present an algorithm to generate designs for spinning objects by optimizing rotational dynamics properties. As input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. We augment the model by creating voids inside its volume, with interior fill represented by an adaptive multi-resolution voxelization. The discrete voxel fill values are optimized using a continuous, nonlinear formulation. Further, we optimize for rotational stability by maximizing the dominant principal moment. We extend our technique to incorporate deformation and multiple materials for cases where internal voids alone are insufficient. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.

[1]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[2]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[3]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  John Perry,et al.  Spinning Tops And Gyroscopic Motions , 1957 .

[6]  Ligang Liu,et al.  Cost-effective printing of 3D objects with skin-frame structures , 2013, ACM Trans. Graph..

[7]  Baining Guo,et al.  Motion-guided mechanical toy modeling , 2012, ACM Trans. Graph..

[8]  Z. Kang,et al.  Topology optimization of space vehicle structures considering attitude control effort , 2009 .

[9]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[10]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[11]  Harold Crabtree An elementary treatment of the theory of spinning tops and gyroscopic motion , 1909 .

[12]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[13]  Dave H. Eberly Game Physics , 2003 .

[14]  Raffaello D'Andrea,et al.  The Cubli: A cube that can jump up and balance , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Nobuyuki Umetani,et al.  Cross-sectional structural analysis for 3D printing optimization , 2013, SIGGRAPH ASIA Technical Briefs.

[16]  Wojciech Matusik,et al.  Spec2Fab , 2013, ACM Trans. Graph..

[17]  Wojciech Matusik,et al.  Chopper: partitioning models into 3D-printable parts , 2012, ACM Trans. Graph..

[18]  R. Cross The rise and fall of spinning tops , 2013 .

[19]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[20]  Wojciech Matusik,et al.  OpenFab , 2013, ACM Trans. Graph..

[21]  R. Cohen The tippe top revisited , 1977 .

[22]  Denis Zorin,et al.  Worst-case structural analysis , 2013, ACM Trans. Graph..

[23]  Tim Weyrich,et al.  State of the Art in Computational Fabrication and Display of Material Appearance , 2013 .

[24]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[25]  Takeo Igarashi,et al.  Kinetic Art Design System Comprising Rigid Body Simulation , 2010 .

[26]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[27]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[28]  G. C. A. DeRose,et al.  Hierarchical Solution of Large-Scale Three-Dimensional Topology Optimization Problems , 1996 .

[29]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[30]  Yoshihiro Kanamori,et al.  An Interactive Design System for Sphericon-Based Geometric Toys Using Conical Voxels , 2011, Smart Graphics.

[31]  Wojciech Matusik,et al.  Boxelization: folding 3D objects into boxes , 2014, ACM Trans. Graph..

[32]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[33]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[34]  J. C. Simo,et al.  The heavy top: a geometric treatment , 1992 .

[35]  Y. Xie,et al.  Stiffness and inertia multicriteria evolutionary structural optimisation , 2001 .

[36]  Tim Weyrich,et al.  Computational Fabrication and Display of Material Appearance , 2013, Eurographics.

[37]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[38]  O. König,et al.  CAD-based Evolutionary Design Optimization with CATIA V 5 , 2012 .

[39]  C. Provatidis Revisiting the Spinning Top , 2012 .

[40]  Victor B. Zordan,et al.  Momentum control for balance , 2009, ACM Trans. Graph..

[41]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[42]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..