Electron Correlation and Separated Pair Approximation in Diatomic Molecules. I. Theory

The theory of antisymmetrized products of separated geminals for many‐electron systems is developed for arbitrary spin states. The geminals are expanded in terms of their natural spin orbitals, and methods are developed for their optimal determination. New variational equations are derived and cast in the form of one pseudoeigenvalue equation for all natural spin orbitals. An alternative scheme is given for finding optimal symmetry‐adapted natural orbitals in terms of an orthonormalized basis set by direct energy minimization. A strategy for optimization is discussed which was found useful in calculations of the ground states of the molecules LiH, BH, NH, and their separated atoms.

[1]  W. Kutzelnigg On the validity of the electron pair approximation for the Beryllium ground state , 1965 .

[2]  Darrell D. Ebbing Configuration Interaction Study of the Lithium Hydride Molecule , 1962 .

[3]  W. Kutzelnigg Die Lösung des quantenmechanischen Zwei-Elektronenproblems durch unmittelbare Bestimmung der natürlichen Einelektronenfunktionen , 1963 .

[4]  R. C. Henderson,et al.  STUDY OF SEPARATED ELECTRON PAIRS IN THE LiH MOLECULE , 1965 .

[5]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Irving Langmuir,et al.  THE ARRANGEMENT OF ELECTRONS IN ATOMS AND MOLECULES. , 1919 .

[7]  Klaus Ruedenberg,et al.  Electron Correlation and Separated‐Pair Approximation. An Application to Berylliumlike Atomic Systems , 1968 .

[8]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[9]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[10]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[11]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[12]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[13]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[14]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[15]  P. E. Cade,et al.  Electronic Structure of Diatomic Molecules. VI.A. Hartree—Fock Wavefunctions and Energy Quantities for the Ground States of the First‐Row Hydrides, AH , 1967 .

[16]  M. P. Barnett,et al.  A GROUP ORBITAL STUDY OF LITHIUM HYDRIDE , 1964 .

[17]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[18]  R. Mcweeny,et al.  A quantum-mechanical study of the water molecule , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  R. Mcweeny,et al.  The density matrix in may-electron quantum mechanics III. Generalized product functions for beryllium and four-electron ions , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.