<p>The purpose of this paper is to study and classify singular solutions of the Poisson problem <disp-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartLayout Enlarged left-brace 1st Row script upper L Subscript mu Superscript s Baseline u equals f in normal upper Omega minus StartSet 0 EndSet comma 2nd Row u equals 0 in double-struck upper R Superscript upper N Baseline minus normal upper Omega EndLayout">
<mml:semantics>
<mml:mrow>
<mml:mo>{</mml:mo>
<mml:mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" side="left" displaystyle="true">
<mml:mtr>
<mml:mtd>
<mml:msubsup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi class="MJX-tex-caligraphic" mathvariant="script">L</mml:mi>
</mml:mrow>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mi>s</mml:mi>
</mml:msubsup>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>f</mml:mi>
<mml:mspace width="1em" />
<mml:mtext> </mml:mtext>
<mml:mtext>in</mml:mtext>
<mml:mtext> </mml:mtext>
<mml:mspace width="thinmathspace" />
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo>
<mml:mo fence="false" stretchy="false">{</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo fence="false" stretchy="false">}</mml:mo>
<mml:mo>,</mml:mo>
</mml:mtd>
</mml:mtr>
<mml:mtr>
<mml:mtd>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0</mml:mn>
<mml:mspace width="1em" />
<mml:mtext> </mml:mtext>
<mml:mtext>in</mml:mtext>
<mml:mtext> </mml:mtext>
<mml:mspace width="thinmathspace" />
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:msup>
<mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo>
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mtext> </mml:mtext>
</mml:mtd>
</mml:mtr>
</mml:mtable>
<mml:mo fence="true" stretchy="true" symmetric="true" />
</mml:mrow>
<mml:annotation encoding="application/x-tex">\begin{equation*} \left \{ \begin {aligned} \mathcal {L}^s_\mu u = f \quad \ \text {in}\ \, \Omega \setminus \{0\},\\ u =0 \quad \ \text {in}\ \, \mathbb {R}^N \setminus \Omega \ \end{aligned} \right . \end{equation*}</mml:annotation>
</mml:semantics>
</mml:math>
</disp-formula>
for the fractional Hardy operator <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper L Subscript mu Superscript s Baseline u equals left-parenthesis negative normal upper Delta right-parenthesis Superscript s Baseline u plus StartFraction mu Over StartAbsoluteValue x EndAbsoluteValue Superscript 2 s Baseline EndFraction u">
<mml:semantics>
<mml:mrow>
<mml:msubsup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi class="MJX-tex-caligraphic" mathvariant="script">L</mml:mi>
</mml:mrow>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mi>s</mml:mi>
</mml:msubsup>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mo>−<!-- − --></mml:mo>
<mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi>
<mml:msup>
<mml:mo stretchy="false">)</mml:mo>
<mml:mi>s</mml:mi>
</mml:msup>
<mml:mi>u</mml:mi>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mrow>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo stretchy="false">|</mml:mo>
</mml:mrow>
<mml:mi>x</mml:mi>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo stretchy="false">|</mml:mo>
</mml:mrow>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mn>2</mml:mn>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mfrac>
<mml:mi>u</mml:mi>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\mathcal {L}_\mu ^s u= (-\Delta )^s u +\frac {\mu }{|x|^{2s}}u</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> in a bounded domain <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega subset-of double-struck upper R Superscript upper N">
<mml:semantics>
<mml:mrow>
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mo>⊂<!-- ⊂ --></mml:mo>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>N</mml:mi>
</mml:msup>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\Omega \subset \mathbb {R}^N</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> (<inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N greater-than-or-equal-to 2">
<mml:semantics>
<mml:mrow>
<mml:mi>N</mml:mi>
<mml:mo>≥<!-- ≥ --></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">N \ge 2</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>) containing the origin. Here <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis negative normal upper Delta right-parenthesis Superscript s">
<mml:semantics>
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mo>−<!-- − --></mml:mo>
<mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi>
<mml:msup>
<mml:mo stretchy="false">)</mml:mo>
<mml:mi>s</mml:mi>
</mml:msup>
</mml:mrow>
<mml:annotation encoding="application/x-tex">(-\Delta )^s</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s element-of left-parenthesis 0 comma 1 right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mo>∈<!-- ∈ --></mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>,</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">s\in (0,1)</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, is the fractional Laplacian of order <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 s">
<mml:semantics>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>s</mml:mi>
</mml:mrow>
<mml:annotation encoding="application/x-tex">2s</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, and <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu greater-than-or-equal-to mu 0">
<mml:semantics>
<mml:mrow>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mo>≥<!-- ≥ --></mml:mo>
<mml:msub>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\mu \ge \mu _0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, where <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu 0 equals minus 2 Superscript 2 s Baseline StartStartFraction normal upper Gamma squared left-parenthesis StartFraction upper N plus 2 s Over 4 EndFraction right-parenthesis OverOver normal upper Gamma squared left-parenthesis StartFraction upper N minus 2 s Over 4 EndFraction right-parenthesis EndEndFraction greater-than 0">
<mml:semantics>
<mml:mrow>
<mml:msub>
<mml:mi>μ<!-- μ --></mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mo>−<!-- − --></mml:mo>
<mml:msup>
<mml:mn>2</mml:mn>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mn>2</mml:mn>
<mml:mi>s</mml:mi>
</mml:mrow>
</mml:msup>
<mml:mfrac>
<mml:mrow>
<mml:msup>
<mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo stretchy="false">(</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>N</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>2</mml:mn>
<mml:mi>s</mml:mi>
</mml:mrow>
<mml:mn>4</mml:mn>
</mml:mfrac>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:msup>
<mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mo stretchy="false">(</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mi>N</mml:mi>
<mml:mo>−<!-- − --></mml:mo>
<mml:mn>2</mml:mn>
<mml:mi>s</mml:mi>
</mml:mrow>
<mml:mn>4</mml:mn>
</mml:mfrac>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:mfrac>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\mu _0 = -2^{2s}\frac {\Gamma ^2(\frac {N+2s}4)}{\Gamma ^2(\frac {N-2s}{4})}>0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is the b
[1]
Bartlomiej Dyda,et al.
Fractional Hardy inequality with a remainder term
,
2009,
0907.4448.
[2]
M. Fall,et al.
Sharp Nonexistence Results for a Linear Elliptic Inequality Involving Hardy and Leray Potentials
,
2010,
1006.5603.
[3]
A. Biswas,et al.
Integral representation of solutions using Green function for fractional Hardy equations
,
2020
.
[4]
Elliott H. Lieb,et al.
Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
,
2006
.
[5]
E. Valdinoci,et al.
Hitchhiker's guide to the fractional Sobolev spaces
,
2011,
1104.4345.
[6]
Krzysztof Bogdan,et al.
Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains
,
1999
.
[7]
L. Dupaigne.
A nonlinear elliptic Pde with the inverse square potential
,
2002
.
[8]
L. Caffarelli,et al.
An Extension Problem Related to the Fractional Laplacian
,
2006,
math/0608640.
[9]
B. Abdellaoui,et al.
The effect of the Hardy potential in some Calder\'on-Zygmund properties for the fractional Laplacian
,
2015,
1510.08604.
[10]
L. Véron,et al.
Semilinear fractional elliptic equations involving measures
,
2013,
1305.0945.
[11]
Alexander Quaas,et al.
Classification of isolated singularities of nonnegative solutions to fractional semi‐linear elliptic equations and the existence results
,
2015,
J. Lond. Math. Soc..
[12]
A. Quaas,et al.
On nonhomogeneous elliptic equations with the Hardy—Leray potentials
,
2017,
Journal d'Analyse Mathématique.
[13]
Xavier Ros-Oton,et al.
The extremal solution for the fractional Laplacian
,
2013,
1305.2489.
[14]
B. Barrios,et al.
Some remarks on the solvability of non-local elliptic problems with the Hardy potential
,
2014
.
[15]
E. Valdinoci,et al.
Nonlocal Diffusion and Applications
,
2015,
1504.08292.
[16]
Ying Wang.
Existence and nonexistence of solutions to elliptic equations involving the Hardy potential
,
2017
.
[17]
Roberto Cignoli,et al.
An introduction to functional analysis
,
1974
.
[18]
L. Véron,et al.
Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data
,
2019,
Mathematics in Engineering.
[19]
V. Felli,et al.
On semilinear elliptic equations with borderline Hardy potentials
,
2012,
1209.4852.
[20]
Luis Silvestre,et al.
Regularity of the obstacle problem for a fractional power of the laplace operator
,
2007
.
[21]
Juan Luis Vázquez,et al.
Nonlinear Diffusion with Fractional Laplacian Operators
,
2012
.
[22]
DILEEP MENON,et al.
AN INTRODUCTION TO FUNCTIONAL ANALYSIS
,
2010
.
[23]
H. Brezis,et al.
On a semilinear elliptic equation with inverse-square potential
,
2005
.
[24]
J. V'azquez,et al.
The fractional Schrödinger equation with singular potential and measure data
,
2018,
Discrete & Continuous Dynamical Systems - A.
[25]
N. Ghoussoub,et al.
Mass and asymptotics associated to fractional Hardy–Schrödinger operators in critical regimes
,
2017,
Communications in Partial Differential Equations.
[26]
A. Quaas,et al.
Fundamental solutions and liouville type theorems for nonlinear integral operators
,
2011
.
[27]
F. Zhou,et al.
Isolated singularities for elliptic equations with Hardy operator and source nonlinearity
,
2017,
1706.01793.
[28]
L. Véron.
CHAPTER 8 - Elliptic Equations Involving Measures
,
2004,
0810.0647.
[29]
Florica C. Cîrstea,et al.
A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations With Inverse Square Potentials
,
2014
.
[30]
Xavier Ros-Oton,et al.
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary
,
2012,
1207.5985.
[31]
M. Fall.
Semilinear elliptic equations for the fractional Laplacian with Hardy potential
,
2011,
Nonlinear Analysis.
[32]
D. Yafaev.
Sharp Constants in the Hardy–Rellich Inequalities
,
1999
.
[33]
S. Dipierro,et al.
Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential
,
2015,
1506.07317.
[34]
Tobias Weth,et al.
Nonexistence results for a class of fractional elliptic boundary value problems
,
2012,
1201.4007.