The Poisson problem for the fractional Hardy operator: Distributional identities and singular solutions

<p>The purpose of this paper is to study and classify singular solutions of the Poisson problem <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartLayout Enlarged left-brace 1st Row script upper L Subscript mu Superscript s Baseline u equals f in normal upper Omega minus StartSet 0 EndSet comma 2nd Row u equals 0 in double-struck upper R Superscript upper N Baseline minus normal upper Omega EndLayout"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" side="left" displaystyle="true"> <mml:mtr> <mml:mtd> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">L</mml:mi> </mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>s</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mspace width="1em" /> <mml:mtext> </mml:mtext> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mspace width="1em" /> <mml:mtext> </mml:mtext> <mml:mtext>in</mml:mtext> <mml:mtext> </mml:mtext> <mml:mspace width="thinmathspace" /> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mtext> </mml:mtext> </mml:mtd> </mml:mtr> </mml:mtable> <mml:mo fence="true" stretchy="true" symmetric="true" /> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} \left \{ \begin {aligned} \mathcal {L}^s_\mu u = f \quad \ \text {in}\ \, \Omega \setminus \{0\},\\ u =0 \quad \ \text {in}\ \, \mathbb {R}^N \setminus \Omega \ \end{aligned} \right . \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> for the fractional Hardy operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper L Subscript mu Superscript s Baseline u equals left-parenthesis negative normal upper Delta right-parenthesis Superscript s Baseline u plus StartFraction mu Over StartAbsoluteValue x EndAbsoluteValue Superscript 2 s Baseline EndFraction u"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">L</mml:mi> </mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mi>s</mml:mi> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mi>s</mml:mi> </mml:msup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mi>μ<!-- μ --></mml:mi> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mfrac> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {L}_\mu ^s u= (-\Delta )^s u +\frac {\mu }{|x|^{2s}}u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a bounded domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega subset-of double-struck upper R Superscript upper N"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\Omega \subset \mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N \ge 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) containing the origin. Here <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis negative normal upper Delta right-parenthesis Superscript s"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">(-\Delta )^s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s element-of left-parenthesis 0 comma 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">s\in (0,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is the fractional Laplacian of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 s"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu greater-than-or-equal-to mu 0"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu \ge \mu _0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu 0 equals minus 2 Superscript 2 s Baseline StartStartFraction normal upper Gamma squared left-parenthesis StartFraction upper N plus 2 s Over 4 EndFraction right-parenthesis OverOver normal upper Gamma squared left-parenthesis StartFraction upper N minus 2 s Over 4 EndFraction right-parenthesis EndEndFraction greater-than 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> </mml:msup> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:mfrac> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:msup> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy="false">(</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mi>s</mml:mi> </mml:mrow> <mml:mn>4</mml:mn> </mml:mfrac> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu _0 = -2^{2s}\frac {\Gamma ^2(\frac {N+2s}4)}{\Gamma ^2(\frac {N-2s}{4})}>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the b

[1]  Bartlomiej Dyda,et al.  Fractional Hardy inequality with a remainder term , 2009, 0907.4448.

[2]  M. Fall,et al.  Sharp Nonexistence Results for a Linear Elliptic Inequality Involving Hardy and Leray Potentials , 2010, 1006.5603.

[3]  A. Biswas,et al.  Integral representation of solutions using Green function for fractional Hardy equations , 2020 .

[4]  Elliott H. Lieb,et al.  Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators , 2006 .

[5]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[6]  Krzysztof Bogdan,et al.  Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains , 1999 .

[7]  L. Dupaigne A nonlinear elliptic Pde with the inverse square potential , 2002 .

[8]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[9]  B. Abdellaoui,et al.  The effect of the Hardy potential in some Calder\'on-Zygmund properties for the fractional Laplacian , 2015, 1510.08604.

[10]  L. Véron,et al.  Semilinear fractional elliptic equations involving measures , 2013, 1305.0945.

[11]  Alexander Quaas,et al.  Classification of isolated singularities of nonnegative solutions to fractional semi‐linear elliptic equations and the existence results , 2015, J. Lond. Math. Soc..

[12]  A. Quaas,et al.  On nonhomogeneous elliptic equations with the Hardy—Leray potentials , 2017, Journal d'Analyse Mathématique.

[13]  Xavier Ros-Oton,et al.  The extremal solution for the fractional Laplacian , 2013, 1305.2489.

[14]  B. Barrios,et al.  Some remarks on the solvability of non-local elliptic problems with the Hardy potential , 2014 .

[15]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[16]  Ying Wang Existence and nonexistence of solutions to elliptic equations involving the Hardy potential , 2017 .

[17]  Roberto Cignoli,et al.  An introduction to functional analysis , 1974 .

[18]  L. Véron,et al.  Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data , 2019, Mathematics in Engineering.

[19]  V. Felli,et al.  On semilinear elliptic equations with borderline Hardy potentials , 2012, 1209.4852.

[20]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[21]  Juan Luis Vázquez,et al.  Nonlinear Diffusion with Fractional Laplacian Operators , 2012 .

[22]  DILEEP MENON,et al.  AN INTRODUCTION TO FUNCTIONAL ANALYSIS , 2010 .

[23]  H. Brezis,et al.  On a semilinear elliptic equation with inverse-square potential , 2005 .

[24]  J. V'azquez,et al.  The fractional Schrödinger equation with singular potential and measure data , 2018, Discrete & Continuous Dynamical Systems - A.

[25]  N. Ghoussoub,et al.  Mass and asymptotics associated to fractional Hardy–Schrödinger operators in critical regimes , 2017, Communications in Partial Differential Equations.

[26]  A. Quaas,et al.  Fundamental solutions and liouville type theorems for nonlinear integral operators , 2011 .

[27]  F. Zhou,et al.  Isolated singularities for elliptic equations with Hardy operator and source nonlinearity , 2017, 1706.01793.

[28]  L. Véron CHAPTER 8 - Elliptic Equations Involving Measures , 2004, 0810.0647.

[29]  Florica C. Cîrstea,et al.  A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations With Inverse Square Potentials , 2014 .

[30]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[31]  M. Fall Semilinear elliptic equations for the fractional Laplacian with Hardy potential , 2011, Nonlinear Analysis.

[32]  D. Yafaev Sharp Constants in the Hardy–Rellich Inequalities , 1999 .

[33]  S. Dipierro,et al.  Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential , 2015, 1506.07317.

[34]  Tobias Weth,et al.  Nonexistence results for a class of fractional elliptic boundary value problems , 2012, 1201.4007.