Visible Light Induced Photoelectrochemical Properties of n-BiVO4 and n-BiVO4/p-Co3O4

The visible light induced photoelectrochemical properties of the pressed powder electrodes n-BiVO4, p-Co3O4, and n-BiVO4/p-Co3O4 containing 0.8 wt % cobalt were investigated. At pH 7 flatband potentials of −0.30 and +0.54 V vs NHE were measured for the bismuth vanadate and cobalt oxide, respectively, whereas −0.31 V was obtained for BiVO4/Co3O4. At a bias of 0.1 V vs Ag/AgCl the n-type photocurrent of BiVO4 changes to p-type upon prolonged irradiation, whereas it remains n-type at the much higher bias of 1.0 V vs Ag/AgCl. The change in conductivity type can be rationalized by invoking oxidation of water to a surface peroxide species. From the photocurrent decay of BiVO4 under chopped irradiation the presence of efficient charge recombination is indicated. It can be suppressed by addition of iodide, thiocyanate, or methanol, leading to about twice as large incident-photon-to-current efficiencies (IPCE). Different from that, in the case of the BiVO4/Co3O4 electrode the IPCE values do not change in the prese...

[1]  Shigeru Kohtani,et al.  Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts , 2005 .

[2]  S. Hünig,et al.  Über zweistufige Redoxsysteme, XII1) Synthese und Polarographie von Quartärsalzen der Phenanthroline, des 2,7‐Diazapyrens sowie der Diazoniapentaphene , 1973 .

[3]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[4]  Donald Fitzmaurice,et al.  Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode , 1991 .

[5]  Henrique E Toma,et al.  TiO2-based light-driven XOR/INH logic gates. , 2006, Angewandte Chemie.

[6]  Fulong Yuan,et al.  Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2 , 2004 .

[7]  J. Augustynski,et al.  Behavior of surface peroxo species in the photoreactions at titanium dioxide , 1986 .

[8]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[9]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[10]  A. Kudo,et al.  Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation , 2005 .

[11]  K. Szaciłowski,et al.  Optoelectronic switches based on wide band gap semiconductors. , 2006, The journal of physical chemistry. B.

[12]  Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction , 1983 .

[13]  B. Boukamp,et al.  Bulk and electrochemical properties of BiVO4 , 1992 .

[14]  B. Orel,et al.  Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route , 2000 .

[15]  Hironori Arakawa,et al.  Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. , 2003, Chemical communications.

[16]  L. Peter,et al.  Dynamic aspects of semiconductor photoelectrochemistry , 1990 .

[17]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[18]  H. Sakata,et al.  Electrical conductivity of Co3O4 films prepared by chemical vapour deposition , 1998 .

[19]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[20]  Shahed U. M. Khan,et al.  PHOTOELECTROCHEMICAL SPLITTING OF WATER AT NANOCRYSTALLINE N-FE2O3 THIN-FILM ELECTRODES , 1999 .

[21]  Gobinda Chandra De,et al.  Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement , 1995 .

[22]  Ryuhei Nakamura,et al.  Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes , 2004 .

[23]  M. Trari,et al.  p-Type CuYO2 as hydrogen photocathode , 2006 .

[24]  Huijun Zhao,et al.  Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. , 2007, Environmental science & technology.

[25]  X. Jiao,et al.  Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. , 2006, The journal of physical chemistry. B.

[26]  A. Barbucci,et al.  Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution , 1999 .

[27]  Wojciech Macyk,et al.  Photoelectrochemical properties of platinum(iv) chloride surface modified TiO_2 , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[28]  Wojciech Macyk,et al.  Light-driven OR and XOR programmable chemical logic gates. , 2006, Journal of the American Chemical Society.

[29]  Y. Nakato,et al.  Promoted Photo-oxidation Reactivity of Particulate BiVO4 Photocatalyst Prepared by a Photoassisted Sol-gel Method , 2005 .

[30]  Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. , 2006, The journal of physical chemistry. B.

[31]  H. Kim,et al.  Photocatalytic nanodiodes for visible-light photocatalysis. , 2005, Angewandte Chemie.

[32]  O. Nikaido,et al.  Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalysts. , 2002 .

[33]  I. Fragalà,et al.  Cobalt hexafluoroacetylacetonate polyether adducts for thin films of cobalt oxides , 2005 .

[34]  E. Wang,et al.  Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes , 2001 .

[35]  H. Tributsch,et al.  Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. , 2005, The journal of physical chemistry. B.

[36]  H. Kisch,et al.  Surface-modified anodic TiO2 films for visible light photocurrent response , 2007 .

[37]  H. Sugihara,et al.  Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. , 2006, The journal of physical chemistry. B.

[38]  H. Kisch,et al.  VISIBLE LIGHT PHOTOCATALYSIS BY A TITANIA TRANSITION METAL COMPLEX , 2004 .

[39]  W. Behl,et al.  Anodic oxidation of cobalt in potassium hydroxide electrolytes , 1971 .

[40]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[41]  Sergio Daolio,et al.  Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition , 2001 .

[42]  K. Szaciłowski,et al.  Synthesis, structure and photoelectrochemical properties of the TiO2–Prussian blue nanocomposite , 2006 .

[43]  Shengwei Liu,et al.  A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst , 2006 .

[44]  Y. Pleskov,et al.  Photoelectrochemical Determination of the Flatband Potential of Boron‐Doped Diamond , 1999 .

[45]  Akihiko Kudo,et al.  Development of photocatalyst materials for water splitting , 2006 .