Equalization advantages of OFFH-CDMA over WDM in EDFAs

The gain of an erbium-doped fiber amplifier (EDFA) is in general wavelength-dependent, leading to different amplification levels among wavelength-division-multiplexing (WDM) channels. The use of optical fast frequency-hopped code-division multiple-access (OFFH-CDMA) offers a natural diversity of wavelength, and therefore gain, thus eliminating the requirement of an equalization stage to achieve flat gain on all channels. Computer simulations are developed to analyze and compare the EDFA equalization performance of these two transmission approaches (code-division multiplexing and WDM), especially in situations where the EDFA operating point is subject to change (e.g., channel add-drop, packet-switching environment). We find that WDM requires an equalization stage that fails when traffic characteristics shift, whereas, OFFH-CDMA presents the advantage of more robust, hence truly dynamic, gain equalization.

[1]  A.A.M. Saleh,et al.  Architectural principles of optical regional and metropolitan access networks , 1999 .

[2]  Leslie A. Rusch,et al.  Application of preemphasis to achieve flat output OSNR in time-varying channels in cascaded EDFAs without equalization , 2001 .

[3]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[4]  A. Srivastava,et al.  EDFA transient response to channel loss in WDM transmission system , 1997, IEEE Photonics Technology Letters.

[5]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[6]  M. Taqqu,et al.  Using Renewal Processes to Generate Long-Range Dependence and High Variability , 1986 .

[7]  B. Landousies,et al.  Theoretical study of the gain equalization of a stabilized gain EDFA for WDM applications , 1997 .

[8]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[9]  Ilkka Norros,et al.  A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..

[10]  A.A.M. Saleh,et al.  Modeling of gain in erbium-doped fiber amplifiers , 1990, IEEE Photonics Technology Letters.

[11]  R. W. Tkach,et al.  Fast power transients in WDM optical networks with cascaded EDFAs , 1997 .

[12]  Ahmed Mokhtar,et al.  Hybrid multiaccess for all-optical LANs with nonzero tuning delays , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[13]  Leslie A. Rusch,et al.  Doped-fiber amplifier dynamics: a system perspective , 1998 .

[14]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[15]  Razak Hossain,et al.  Extended hyperbolic congruential frequency hop code: generation and bounds for cross- and auto-ambiguity function , 1996, IEEE Trans. Commun..

[16]  Mohsen Kavehrad,et al.  Gain equalization by mitigating self-filtering effect in a chain of cascaded EDFA's for WDM transmissions , 1995 .

[17]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[18]  Leslie A. Rusch,et al.  Passive optical fast frequency-hop CDMA communications system , 1999 .

[19]  M. Shimizu,et al.  Tm-doped fiber amplifiers for 1470-nm-band WDM signals , 2000, IEEE Photonics Technology Letters.

[20]  Walter Willinger,et al.  Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks , 1994, IEEE J. Sel. Areas Commun..

[21]  D. J. Jefferies,et al.  Self-similarity in a deterministic model of data transfer , 1996 .

[22]  T. Kanamori,et al.  A low-noise and gain-flattened amplifier composed of a silica-based and a fluoride-based Er/sup 3+/-doped fiber amplifier in a cascade configuration , 1996, IEEE Photonics Technology Letters.

[23]  Mark W. Garrett,et al.  Modeling and generation of self-similar vbr video traffic , 1994, SIGCOMM 1994.

[24]  Y. Miyajima,et al.  Optical amplification in Er/sup 3+/-doped single-mode fluoride fiber , 1990, IEEE Photonics Technology Letters.

[25]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[26]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[27]  William Stallings,et al.  High-Speed Networks: TCP/IP and ATM Design Principles , 1998 .

[28]  M. Krain,et al.  Gain-equalized, eight-wavelength WDM optical add-drop multiplexer with an 8-dB dynamic range , 1995, IEEE Photonics Technology Letters.

[29]  K. Aida,et al.  Wide-bandwidth and long-distance WDM transmission using highly gain-flattened hybrid amplifier , 1999, IEEE Photonics Technology Letters.

[30]  A. Bononi,et al.  Large power swings in doped-fiber amplifiers with highly variable data , 1999, IEEE Photonics Technology Letters.

[31]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[32]  Y. Nishida,et al.  Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm , 1998, IEEE Photonics Technology Letters.

[33]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1997, TNET.

[34]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[35]  Sidney I. Resnick,et al.  Heavy Tail Modelling and Teletraffic Data , 1995 .

[36]  H. Toba,et al.  Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers , 1991, IEEE Photonics Technology Letters.

[37]  S.H. Huang,et al.  Experimental demonstration of active equalization and ASE suppression of three 2.5-Gb/s WDM-network channels over 2500 km using AOTF as transmission filters , 1997, IEEE Photonics Technology Letters.

[38]  J. L. Zyskind,et al.  Average inversion level, modeling, and physics of erbium-doped fiber amplifiers , 1997 .

[39]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[40]  L. Gasca,et al.  Gain equalization with optimized slanted Bragg grating on adapted fibre for multichannel long-haul submarine transmission , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[41]  Adel A. M. Saleh,et al.  Model for gain dynamics in erbium-doped fibre amplifiers , 1996 .

[42]  M. Parker,et al.  Dynamic holographic spectral equalization for WDM , 1997, IEEE Photonics Technology Letters.

[43]  M. Karasek,et al.  Analysis of dynamic pump-loss controlled gain-locking system for erbium-doped fiber amplifiers , 1998, IEEE Photonics Technology Letters.

[44]  F. Horst,et al.  Adaptive gain equalizer in high-index-contrast SiON technology , 2000, IEEE Photonics Technology Letters.

[45]  Zafer Sahinoglu,et al.  On multimedia networks: self-similar traffic and network performance , 1999, IEEE Commun. Mag..

[46]  Leslie A. Rusch,et al.  Equalization advantages of OFFH-CDMA over WDM in EDFAs , 2000, Applications of Photonic Technology.

[47]  Namkyoo Park,et al.  Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters , 1998 .

[48]  Michalis N. Zervas,et al.  Twincore erbium-doped fibre amplifier with passive spectral gain equalisation , 1993 .

[49]  M. Guy,et al.  Gain equalization of EDFA's with Bragg gratings , 1999, IEEE Photonics Technology Letters.

[50]  S. Kawai,et al.  Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier , 1999, IEEE Photonics Technology Letters.

[51]  S. L. Danielsen,et al.  Wavelength conversion in optical packet switching , 1998 .

[52]  Kumar N. Sivarajan,et al.  Optical Networks: A Practical Perspective , 1998 .

[53]  Walter Willinger,et al.  Long-range dependence in variable-bit-rate video traffic , 1995, IEEE Trans. Commun..

[54]  R.W. Tkach,et al.  Equalization in amplified WDM lightwave transmission systems , 1992, IEEE Photonics Technology Letters.

[55]  Miron Livny,et al.  The Impact of Autocorrelation on Queuing Systems , 1993 .

[56]  Alberto Bononi,et al.  Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance , 1999 .

[57]  M.A. Ali,et al.  Multiwavelength fiber-amplifier cascades with equalization employing Mach-Zehnder optical filter , 1995, IEEE Photonics Technology Letters.

[58]  Leslie A. Rusch,et al.  Cross-gain modulation effect on the behaviour of packetized cascaded EDFAs , 2001 .

[59]  G. Swallow MPLS advantages for traffic engineering , 1999, IEEE Commun. Mag..

[60]  Gerard Lachs,et al.  Fiber optic communications : systems, analysis, and enhancements , 1998 .

[61]  Leslie A. Rusch,et al.  Output power excursions in a cascade of EDFAs fed by multichannel burst-mode packet traffic: experimentation and modeling , 2001 .

[62]  Leslie A. Rusch,et al.  Robust optical FFH-CDMA communications: coding in place of frequency and temperature controls , 1999 .

[63]  Leslie A. Rusch,et al.  Output power and SNR swings in cascades of EDFAs for circuit- and packet-switched optical networks , 1999 .

[64]  J. A. Walker,et al.  Dynamic spectral power equalization using micro-opto-mechanics , 1998, IEEE Photonics Technology Letters.

[65]  Arrayed waveguide dynamic gain equalization filter with reduced insertion loss and increased dynamic range , 2001, IEEE Photonics Technology Letters.

[66]  Bruno Lavigne,et al.  Transparent optical packet switching: the European ACTS KEOPS project approach , 1998 .

[67]  R. Olshansky Noise figure for erbium-doped optical fibre amplifiers , 1988 .

[68]  Mohsen Kavehrad,et al.  Tunable coherent optical transversal EDFA gain equalization , 1995 .

[69]  Ivan Andonovic,et al.  Buffering in optical packet switches , 1998 .