Foundations for Analysis and Proof Theory

The title of my paper indicates that I plan to write about foundations for analysis and about proof theory; however, I do not intend to write about the foundations for analysis and thus not about analysis viewed from the vantage point of any “school” in the philosophy of mathematics. Rather, I shall report on some mathematical and proof-theoretic investigations which provide material for (philosophical) reflection. These investigations concern the informal mathematical theory of the continuum, on the one hand, and formal systems in which parts of the informal theory can be developed, on the other. The proof-theoretic results of greatest interest for my purposes are of the following form: for each F in a class of sentences, F is provable in T if and only if F is provable in T* where T is a classical set-theoretic system for analysis and T* a constructive theory. In that case, T is called REDUCIBLE TO T*, as the principles of T* are more elementary and more restricted.

[1]  Solomon Feferman,et al.  Inductive definitions and subsystems of analysis , 1981 .

[2]  E. Zermelo Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme , 1935 .

[3]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[4]  L. Brouwer Über Definitionsbereiche von- Funktionen , 1927 .

[5]  Paul Bernays BEMERKUNGEN ZU LORENZEN'S STELLUNGNAHME IN DER PHILOSOPHIE DER MATHEMATIK , 1978 .

[6]  Gregory H. Moore Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .

[7]  G. Takeuti Two Applications of Logic to Mathematics , 1978 .

[8]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[9]  R. O. Gandy Bertrand Russell, as Mathematician , 1973 .

[10]  Paul Bernays Hilberts Untersuchungen über die Grundlagen der Arithmetik , 1935 .

[11]  Georg Kreisel,et al.  A survey of proof theory , 1968, Journal of Symbolic Logic.

[12]  Solomon Feferman A MORE PERSPICUOUS FORMAL SYSTEM FOR PREDICATIVITY , 1978 .

[13]  D. Hilbert,et al.  Die Grundlegung der elementaren Zahlenlehre , 1931 .

[14]  Solomon Feferman,et al.  Systems of predicative analysis , 1964, Journal of Symbolic Logic.

[15]  Paul Bernays,et al.  Abhandlungen zur Philosophie der Mathematik , 1977 .

[16]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[17]  Harvey M. Friedman Iterated Inductive Definitions and Σ21-AC , 1970 .

[18]  K. Schutte Review: Paul Bernays, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie , 1978 .

[19]  Akiko Kino,et al.  Intuitionism and Proof Theory , 1970 .

[20]  W. Buchholz Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .

[21]  É. Borel Leçons sur la théorie des fonctions , 2009 .

[22]  D. Hilbert,et al.  Über homogene Functionen. , 1900 .

[23]  David Hilbert,et al.  Grundlagen der Geometrie , 2022 .

[24]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[25]  S. Feferman Formal Theories for Transfinite Iterations of Generalized Inductive Definitions and Some Subsystems of Analysis , 1970 .

[26]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[27]  Paul Bernays Über Hilberts Gedanken zur Grundlegung der Arithmetik. , 1922 .

[28]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .

[29]  William W. Tait Functionals Defined by Transfinite Recursion , 1965, J. Symb. Log..

[30]  D. Hilbert,et al.  Probleme der Grundlegung der Mathematik , 1930 .

[31]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[32]  K. Gödel Philosophy of mathematics: Russell's mathematical logic , 1984 .