Mathematical morphology and spatial relationships: quantitative, semi-quantitative and symbolic settings

Basic mathematical morphology operations rely mainly on local information, based on the concept of structuring element. But mathematical morphology also deals with more global and structural information since several spatial relationships can be expressed in terms of morphological operations (mainly dilations). The aim of this paper is to show that this framework allows to represent in a unified way spatial relationships in various settings: a purely quantitative one if objects are precisely defined, a semi-quantitative one if objects are imprecise and represented as spatial fuzzy sets, and a qualitative one, for reasoning in a logical framework about space. This is made possible thanks to the strong algebraic structure of mathematical morphology, that finds equivalents in set theoretical terms, fuzzy operations and logical expressions.

[1]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[2]  Azriel Rosenfeld,et al.  Degree of adjacency or surroundedness , 1984, Pattern Recognit..

[3]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[4]  Benjamin Kuipers,et al.  Modeling Spatial Knowledge , 1978, IJCAI.

[5]  G. Matheron Random Sets and Integral Geometry , 1976 .

[6]  L. Vieu Spatial Representation and Reasoning in Artificial Intelligence , 1997 .

[7]  Bilal M. Ayyub,et al.  Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach , 1997 .

[8]  Jiming Liu,et al.  A Method of Spatial Reasoning Based on Qualitative Trigonometry , 1998, Artif. Intell..

[9]  Eliseo Clementini,et al.  Approximate topological relations , 1997, Int. J. Approx. Reason..

[10]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[11]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[12]  Isabelle Bloch,et al.  Fuzzy Relative Position Between Objects in Image Processing: New Definition and Properties Based on a Morphological Approach , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[14]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[15]  Isabelle Bloch,et al.  Fuzzy Relative Position Between Objects in Image Processing: A Morphological Approach , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[17]  Divyendu Sinha,et al.  Fuzzy mathematical morphology , 1992, J. Vis. Commun. Image Represent..

[18]  Azriel Rosenfeld,et al.  Fuzzy Digital Topology , 1979, Inf. Control..

[19]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[20]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[21]  Azriel Rosenfeld,et al.  The fuzzy geometry of image subsets , 1984, Pattern Recognit. Lett..

[22]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[23]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[24]  Donna J. Peuquet,et al.  Representations of Geographic Space: Toward a Conceptual Synthesis , 1988 .

[25]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[26]  Anthony G. Cohn,et al.  Representing and Reasoning with Qualitative Spatial Relations About Regions , 1997 .

[27]  Soumitra Dutta,et al.  Approximate spatial reasoning: Integrating qualitative and quantitative constraints , 1991, Int. J. Approx. Reason..

[28]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[29]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[30]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[31]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[32]  Jérôme Lang,et al.  Towards mathematical morpho-logics , 2002 .

[33]  James M. Keller,et al.  Quantitative analysis of properties and spatial relations of fuzzy image regions , 1993, IEEE Trans. Fuzzy Syst..

[34]  Anca L. Ralescu,et al.  Spatial organization in 2D segmented images: representation and recognition of primitive spatial relations , 1994, CVPR 1994.

[35]  László T. Kóczy On the description of relative position of fuzzy patterns , 1988, Pattern Recognit. Lett..

[36]  Henk J. A. M. Heijmans,et al.  Grey-Scale Morphology Based on Fuzzy Logic , 2002, Journal of Mathematical Imaging and Vision.

[37]  Laurent Wendling,et al.  A New Way to Represent the Relative Position between Areal Objects , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Anca L. Ralescu,et al.  Using imprecise environment information for guiding scene interpretation , 1997, Fuzzy Sets Syst..

[39]  Alessandro Saffiotti,et al.  Using fuzzy sets to represent uncertain spatial knowledge in autonomous robots , 1999, Spatial Cogn. Comput..

[40]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[41]  Isabelle Bloch,et al.  On fuzzy distances and their use in image processing under imprecision , 1999, Pattern Recognit..

[42]  Isabelle Bloch,et al.  Fuzzy Adjacency between Image Objects , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[43]  John Freeman,et al.  The modelling of spatial relations , 1975 .

[44]  Achille C. Varzi Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology , 1996, Data Knowl. Eng..

[45]  Isabelle Bloch,et al.  Solving Graph Matching with EDAs Using a Permutation-Based Representation , 2002, Estimation of Distribution Algorithms.

[46]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[47]  Isabelle Bloch,et al.  Fuzzy morphisms between graphs , 2002, Fuzzy Sets Syst..

[48]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[49]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[50]  James M. Keller,et al.  Comparison of spatial relation definitions in computer vision , 1995, Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.