On recent advances in PV output power forecast

[1]  Mohammed Osman Makki Elrayah,et al.  Performance Analysis of Grid Connected Photovoltaic System , 2017 .

[2]  Francesco Grimaccia,et al.  Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power , 2017, Math. Comput. Simul..

[3]  Abbas Khosravi,et al.  A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings , 2015 .

[4]  A. Dolara,et al.  Comparison of different physical models for PV power output prediction , 2015 .

[5]  Carlos F.M. Coimbra,et al.  On the role of lagged exogenous variables and spatio–temporal correlations in improving the accuracy of solar forecasting methods , 2015 .

[6]  Vishwamitra Oree,et al.  A hybrid method for forecasting the energy output of photovoltaic systems , 2015 .

[7]  O. Perpiñán,et al.  PV power forecast using a nonparametric PV model , 2015 .

[8]  H. Yokoyama,et al.  High-Precision Forecasting Model of Solar Irradiance Based on Grid Point Value Data Analysis for an Efficient Photovoltaic System , 2015, IEEE Transactions on Sustainable Energy.

[9]  Chunxiang Yang,et al.  An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data , 2015, IEEE Transactions on Sustainable Energy.

[10]  J. Kleissl,et al.  Embedded nowcasting method using cloud speed persistence for a photovoltaic power plant , 2015 .

[11]  Carlos F.M. Coimbra,et al.  Short-term reforecasting of power output from a 48 MWe solar PV plant , 2015 .

[12]  Atul K. Raturi,et al.  Renewables 2016 Global status report , 2015 .

[13]  Hegazy Rezk,et al.  Experimental implementation of meteorological data and photovoltaic solar radiation monitoring system: Meteorological Data and Photovoltaic Solar Radiation Monitoring System , 2015 .

[14]  Ramesh C. Bansal,et al.  A review of key power system stability challenges for large-scale PV integration , 2015 .

[15]  Bri-Mathias Hodge,et al.  A suite of metrics for assessing the performance of solar power forecasting , 2015 .

[16]  Le Xie,et al.  Multitime-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation , 2015, IEEE Transactions on Sustainable Energy.

[17]  Dong Wang,et al.  Learning machines: Rationale and application in ground-level ozone prediction , 2014, Appl. Soft Comput..

[18]  Yaochu Jin,et al.  Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction , 2014, Neurocomputing.

[19]  Yuguo Chen,et al.  Distributed PV power forecasting using genetic algorithm based neural network approach , 2014, Proceedings of the 2014 International Conference on Advanced Mechatronic Systems.

[20]  Maria Grazia De Giorgi,et al.  Photovoltaic power forecasting using statistical methods: impact of weather data , 2014 .

[21]  Chao-Ming Huang,et al.  A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output , 2014, IEEE Transactions on Sustainable Energy.

[22]  Emad M. Ahmed,et al.  PV power forecasting using different Artificial Neural Networks strategies , 2014, 2014 First International Conference on Green Energy ICGE 2014.

[23]  Zuhairi Baharudin,et al.  A hybrid neuro-genetic approach for STLF: A comparative analysis of model parameter variations , 2014, 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014).

[24]  Zuhairi Baharudin,et al.  A Comparative Analysis of Neural Network Based Short Term Load Forecast Models for Anomalous Days Load Prediction , 2014, J. Comput..

[25]  Joao Gari da Silva Fonseca Junior,et al.  Forecasting Regional Photovoltaic Power Generation - A Comparison of Strategies to Obtain One-Day-Ahead Data , 2014 .

[26]  Jan Kleissl,et al.  Comparison of Solar Power Output Forecasting Performance of the Total Sky Imager and the University of California, San Diego Sky Imager , 2014 .

[27]  A. Cronin,et al.  Intra-hour forecasts of solar power production using measurements from a network of irradiance sensors , 2013 .

[28]  J. Kleissl,et al.  Reporting of irradiance modeling relative prediction errors , 2013 .

[29]  Amanpreet Kaur,et al.  Impact of onsite solar generation on system load demand forecast , 2013 .

[30]  Paras Mandal,et al.  Solar PV power generation forecast using a hybrid intelligent approach , 2013, 2013 IEEE Power & Energy Society General Meeting.

[31]  Roy McCann,et al.  Evaluation of a Kalman predictor approach in forecasting PV solar power generation , 2013, 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG).

[32]  A. Hellal,et al.  Power Forecasting of Photovoltaic Generation , 2013 .

[33]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .

[34]  S. Pelland,et al.  Solar and photovoltaic forecasting through post‐processing of the Global Environmental Multiscale numerical weather prediction model , 2013 .

[35]  Chul-Hwan Kim,et al.  Determination Method of Insolation Prediction With Fuzzy and Applying Neural Network for Long-Term Ahead PV Power Output Correction , 2013, IEEE Transactions on Sustainable Energy.

[36]  C. Coimbra,et al.  Proposed Metric for Evaluation of Solar Forecasting Models , 2013 .

[37]  John Boland,et al.  Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model , 2013 .

[38]  Z. Baharudin,et al.  A review on short term load forecasting using hybrid neural network techniques , 2012, 2012 IEEE International Conference on Power and Energy (PECon).

[39]  Jorge J. Gómez-Sanz,et al.  A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework , 2012, Sensors.

[40]  H. Mori,et al.  Development of GRBFN with global structure for PV generation output forecasting , 2012, 2012 IEEE Power and Energy Society General Meeting.

[41]  H. Pedro,et al.  Assessment of forecasting techniques for solar power production with no exogenous inputs , 2012 .

[42]  Peng Wang,et al.  Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines , 2011, IEEE Transactions on Industry Applications.

[43]  Paras Mandal,et al.  Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques , 2012, Complex Adaptive Systems.

[44]  Vilas N. Ghate,et al.  Daily peak load forecasting using ANN , 2011, 2011 Nirma University International Conference on Engineering.

[45]  Bangyin Liu,et al.  Online 24-h solar power forecasting based on weather type classification using artificial neural network , 2011 .

[46]  Detlev Heinemann,et al.  Regional PV power prediction for improved grid integration , 2011 .

[47]  Eleonora D'Andrea,et al.  24-hour-ahead forecasting of energy production in solar PV systems , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[48]  Song-Keun Lee,et al.  Development of algorithm for day ahead PV generation forecasting using data mining method , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[49]  L. Mili,et al.  Electric Load Forecasting Based on Statistical Robust Methods , 2011, IEEE Transactions on Power Systems.

[50]  C. K. Chan,et al.  Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN , 2011 .

[51]  J. Kleissl,et al.  Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States , 2011 .

[52]  Jing Shi,et al.  Bayesian adaptive combination of short-term wind speed forecasts from neural network models , 2011 .

[53]  Lei Wang,et al.  An ANN-based Approach for Forecasting the Power Output of Photovoltaic System , 2011 .

[54]  Boonyang Plangklang,et al.  Forecasting Power output of PV Grid Connected System in Thailand without using Solar Radiation Measurement , 2011 .

[55]  Cyril Voyant,et al.  Optimization of an artificial neural network dedicated to the multivariate forecasting of daily glob , 2011 .

[56]  Xiaoyan Xu,et al.  Comparative study of power forecasting methods for PV stations , 2010, 2010 International Conference on Power System Technology.

[57]  Cyril Voyant,et al.  Forecasting of preprocessed daily solar radiation time series using neural networks , 2010 .

[58]  T. Hoff,et al.  Validation of short and medium term operational solar radiation forecasts in the US , 2010 .

[59]  Paras Mandal,et al.  A review of wind power and wind speed forecasting methods with different time horizons , 2010, North American Power Symposium 2010.

[60]  Robert K. Dixon,et al.  US energy conservation and efficiency policies: Challenges and opportunities , 2010 .

[61]  L. Zarzalejo,et al.  Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning , 2010 .

[62]  George D. Rodriguez,et al.  A utility perspective of the role of energy storage in the smart grid , 2010, IEEE PES General Meeting.

[63]  Geothermal Energy Western Wind and Solar Integration Study , 2010 .

[64]  L. Hontoria,et al.  Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods , 2010 .

[65]  Silja Meyer-Nieberg,et al.  Electric load forecasting methods: Tools for decision making , 2009, Eur. J. Oper. Res..

[66]  Henrik Madsen,et al.  Online short-term solar power forecasting , 2009 .

[67]  Carlo Lucheroni,et al.  A resonating model for the power market and its calibration , 2009, 2009 6th International Conference on the European Energy Market.

[68]  Gordon Reikard Predicting solar radiation at high resolutions: A comparison of time series forecasts , 2009 .

[69]  L. Ramírez,et al.  Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations , 2009 .

[70]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for photovoltaic applications: A review , 2008 .

[71]  Maher Chaabene,et al.  Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems , 2008 .

[72]  Roland Wengenmayr,et al.  Renewable energy : sustainable energy concepts for the future , 2008 .

[73]  John Boland,et al.  Time Series Modelling of Solar Radiation , 2008 .

[74]  C.S. Ozveren,et al.  Short term load forecasting using Multiple Linear Regression , 2007, 2007 42nd International Universities Power Engineering Conference.

[75]  P. Denholm,et al.  Evaluating the Limits of Solar Photovoltaics (PV) in Traditional Electric Power Systems , 2007 .

[76]  Michael R. Lyu,et al.  A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training , 2007, Appl. Math. Comput..

[77]  S. H. Cao,et al.  Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis , 2006 .

[78]  S. N. Kaplanis,et al.  New methodologies to estimate the hourly global solar radiation; Comparisons with existing models , 2006 .

[79]  Juan Julián Merelo Guervós,et al.  Evolving RBF neural networks for time-series forecasting with EvRBF , 2004, Inf. Sci..

[80]  Heidar A. Malki,et al.  Short-term electric power load forecasting using feedforward neural networks , 2004, Expert Syst. J. Knowl. Eng..

[81]  R. Kuhlemann,et al.  Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module , 2004 .

[82]  Pat Bodger,et al.  Forecasting electricity consumption: A comparison of models for New Zealand , 2004 .

[83]  Madan M. Gupta,et al.  Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory , 2003 .

[84]  Alireza Khotanzad,et al.  A Neuro-Fuzzy Approach to Short-Term Load Forecasting in a Price-Sensitive Environment , 2002, IEEE Power Engineering Review.

[85]  Hesham K. Alfares,et al.  Electric load forecasting: Literature survey and classification of methods , 2002, Int. J. Syst. Sci..

[86]  Athanasios Sfetsos,et al.  Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques , 2000 .

[87]  R. G. Morris D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949 , 1999, Brain Research Bulletin.

[88]  Yoshishige Kemmoku,et al.  DAILY INSOLATION FORECASTING USING A MULTI-STAGE NEURAL NETWORK , 1999 .

[89]  Lakhmi C. Jain,et al.  Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms: Industrial Applications , 1998 .

[90]  Loi Lei Lai,et al.  Intelligent System Applications in Power Engineering: Evolutionary Programming and Neural Networks , 1998 .

[91]  Francisco Sandoval Hernández,et al.  Short-Term Peak Load Forecasting: Statistical Methods Versus Artificial Neural Networks , 1997, IWANN.

[92]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[93]  Dan W. Patterson,et al.  Artificial Neural Networks: Theory and Applications , 1998 .

[94]  John Boland,et al.  Time-series analysis of climatic variables , 1995 .

[95]  Chao-Ming Huang,et al.  Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting , 1995 .

[96]  B. Hansen TIME SERIES ANALYSIS James D. Hamilton Princeton University Press, 1994 , 1995, Econometric Theory.

[97]  James D. Hamilton Time Series Analysis , 1994 .

[98]  Minesh B. Amin,et al.  Generalization by Neural Networks , 1992, IEEE Trans. Knowl. Data Eng..

[99]  Y.-Y. Hsu,et al.  Short term load forecasting using a multilayer neural network with an adaptive learning algorithm , 1992 .

[100]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[101]  P. Akhter,et al.  A novel approach to estimate the clear day global radiation , 1991 .

[102]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[103]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[104]  Ronald J. Williams,et al.  Experimental Analysis of the Real-time Recurrent Learning Algorithm , 1989 .

[105]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[106]  Bernard Widrow,et al.  Neural nets for adaptive filtering and adaptive pattern recognition , 1988, Computer.

[107]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[108]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[109]  W. R. Christiaanse Short-Term Load Forecasting Using General Exponential Smoothing , 1971 .

[110]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[111]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .