Asymmetric quantum network based on multipartite Einstein–Podolsky–Rosen steering

In this work, we propose an asymmetric multi-user access optical network with hierarchical structure in terms of steering ability. The N-partite system is generated by mixing two squeezed lights and N−2 vacuum modes at N−1 beam splitters. The asymmetry of this system can be constructed by choosing proper reflectivities of beam splitters and introducing asymmetric loss to channels of the network, such that the steering ability is distributed asymmetrically among users. By proper construction, one superior in the network possesses higher steering ability than any one of the remaining N−1 subordinates. We show how to accomplish the directional quantum steering between them, i.e., the superior can apparently steer any subordinate’s state, but it cannot always happen in the opposite direction. In addition, we quantify the thresholds of loss tolerance that will prevent the extraction of information of the superior by M(1≤M≤N−1) subordinates’ local measurements. An important feature of such a network is that the superior can send a secret message to certain subordinates without trustworthy assumptions about them and their apparatus. Our findings have applications in one-sided device-independent quantum communication protocol with multi-users.

[1]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. Reid,et al.  Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering , 2013, 1310.2729.

[3]  Roman Schnabel,et al.  Towards Einstein-Podolsky-Rosen quantum channel multiplexing , 2007, 0710.3086.

[4]  V. Giovannetti,et al.  Characterizing the entanglement of bipartite quantum systems , 2002, quant-ph/0210155.

[5]  Samuel L. Braunstein,et al.  Greenberger-Horne-Zeilinger nonlocality in phase space , 2000, quant-ph/0006029.

[6]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[7]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[8]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[9]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[10]  B. Yurke,et al.  Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. , 1986, Physical review letters.

[11]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[12]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[13]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[14]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[15]  Hidehiro Yonezawa,et al.  Experimental creation of a fully inseparable tripartite continuous-variable state. , 2003, Physical review letters.

[16]  Reinhard F. Werner,et al.  Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source , 2011, 1103.1817.

[17]  Qihuang Gong,et al.  Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks. , 2014, Optics letters.

[18]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[19]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[20]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[21]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[22]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[23]  Qihuang Gong,et al.  Constructive role of thermal noise in tripartite quantum steering , 2014 .

[24]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[25]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[26]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[27]  Roman Schnabel,et al.  Strong Einstein-Podolsky-Rosen steering with unconditional entangled states , 2013 .

[28]  Eric G. Cavalcanti,et al.  Loss-tolerant tests of Einstein-Podolsky-Rosen steering , 2013, 1310.8053.

[29]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[30]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[31]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[32]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[33]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[34]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[35]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[36]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[37]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[38]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[39]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[40]  B. Sanders,et al.  How to share a continuous-variable quantum secret by optical interferometry , 2001, quant-ph/0107074.

[41]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[42]  Margaret D. Reid,et al.  Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses , 2013, 1312.6725.

[43]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[44]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[45]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[46]  W. P. Bowen,et al.  Continuous variable (2, 3) threshold quantum secret sharing schemes , 2003 .

[47]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[48]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[49]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[50]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[51]  Hans-A. Bachor,et al.  Programmable multimode quantum networks , 2012, Nature Communications.

[52]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[53]  Eric G. Cavalcanti,et al.  Entanglement verification and steering when Alice and Bob cannot be trusted , 2012, 1210.6051.