Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

Abstract. The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, “Enduring Quests, Daring Visions.” The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

[1]  E. Cady,et al.  Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept , 2014 .

[2]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[3]  Robert M. Warden,et al.  Cryogenic Nano-Actuator for JWST , 2012 .

[4]  H. Philip Stahl,et al.  SLS launched missions concept studies for LUVOIR mission , 2015, SPIE Optical Engineering + Applications.

[5]  Mark Clampin,et al.  Demonstrating broadband billion-to-one contrast with the Visible Nulling Coronagraph , 2015, SPIE Optical Engineering + Applications.

[6]  H. Philip Stahl Optics needs for future space telescopes , 2003, SPIE Optics + Photonics.

[7]  S. Gezari,et al.  From Cosmic Birth to Living Earths: The Future of UVOIR Space Astronomy , 2015, 1507.04779.

[8]  Ritva Keski-Kuha,et al.  Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer. , 2008, Applied optics.

[9]  H. Philip Stahl JWST mirror technology development results , 2007, SPIE Optical Engineering + Applications.

[10]  Eric Cady,et al.  Measurements of incoherent light and background structure at exo-Earth detection levels in the High Contrast Imaging Testbed , 2014, Astronomical Telescopes and Instrumentation.

[11]  Dieter Gäbler,et al.  Metal fluoride coatings prepared by ion-assisted deposition , 2008, Optical Systems Design.

[12]  Dmitry Savransky,et al.  Maximized exoEarth candidate yields for starshades , 2016 .

[13]  John E. Krist,et al.  Stability error budget for an aggressive coronagraph on a 3.8 m telescope , 2011, Optical Engineering + Applications.

[14]  H. Philip Stahl,et al.  ATLAST-8 Mission concept study for 8-meter monolithic UV/optical space telescope , 2010, Astronomical Telescopes + Instrumentation.

[15]  D. A. Sheikh,et al.  Durable silver coating for Kepler Space Telescope primary mirror , 2008, Astronomical Telescopes + Instrumentation.

[16]  Lee D. Feinberg,et al.  JWST primary mirror material selection , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  Robert J. Vanderbei,et al.  Design of a laboratory testbed for external occulters at flight Fresnel numbers , 2015, SPIE Optical Engineering + Applications.

[18]  Martin W. Regehr,et al.  Error budgets for the Exoplanet Starshade (Exo-S) probe-class mission study , 2015, SPIE Optical Engineering + Applications.

[19]  A. Hussain,et al.  Improving radiation tolerance in e2v CCD sensors , 2009, Optical Engineering + Applications.

[20]  Eric Cady,et al.  Optical instrumentation for science and formation flying with a starshade observatory , 2015, SPIE Optical Engineering + Applications.

[21]  Stuart Shaklan,et al.  Aluminum mirror coatings for UVOIR telescope optics including the far UV , 2015, SPIE Optical Engineering + Applications.

[22]  Allen J. Bronowicki Vibration Isolator for Large Space Telescopes , 2006 .

[23]  David Redding,et al.  Actuated hybrid mirrors for space telescopes , 2010, Astronomical Telescopes + Instrumentation.

[24]  Stuart B. Shaklan,et al.  Polarization compensating protective coatings for TPF-Coronagraph optics to control contrast degrading cross polarization leakage , 2005, SPIE Optics + Photonics.

[25]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS , 2014, 1412.2751.

[26]  N. Jeremy Kasdin,et al.  Diffractive analysis of limits of an occulter experiment , 2014, Astronomical Telescopes and Instrumentation.

[27]  Feng Zhao,et al.  Metrology system for the Terrestrial Planet Finder Coronagraph , 2004, SPIE Optics + Photonics.

[28]  Feng Zhao Development of high-precision laser heterodyne metrology gauges , 2005, SPIE/COS Photonics Asia.

[29]  Nelson Pedreiro,et al.  Unprecedented Vibration Isolation Demonstration Using the Disturbance-Free Payload Concept , 2004 .

[30]  Xu Wang,et al.  Low order wavefront sensing and control for WFIRST-AFTA coronagraph , 2015, SPIE Optical Engineering + Applications.

[31]  R. Vanderbei,et al.  Monochromatic verification of high-contrast imaging with an occulter. , 2013, Optics express.

[32]  N. Jeremy Kasdin,et al.  The Exo-S probe class starshade mission , 2015, SPIE Optical Engineering + Applications.

[33]  Lucian A. Montagnino Test And Evaluation Of The Hubble Space Telescope 2.4-meter Primary Mirror , 1986, Optics & Photonics.

[34]  M. Clampin,et al.  Space telescope sensitivity and controls for exoplanet imaging , 2012 .

[35]  H. Philip Stahl,et al.  Overview and accomplishments of advanced mirror technology development phase 2 (AMTD-2) project , 2015, SPIE Optical Engineering + Applications.

[36]  Robert J. Vanderbei,et al.  Technology demonstration of starshade manufacturing for NASA's Exoplanet mission program , 2012, Other Conferences.

[37]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.

[38]  F. Ozel,et al.  Enduring Quests-Daring Visions (NASA Astrophysics in the Next Three Decades) , 2014, 1401.3741.

[39]  Eric Cady,et al.  Studies of the effects of control bandwidth and dark-hole size on the HCIT contrast performance , 2015, SPIE Optical Engineering + Applications.

[40]  Eric Cady,et al.  Successful Starshade petal deployment tolerance verification in support of NASA’s technology development for exoplanet missions , 2014, Astronomical Telescopes and Instrumentation.

[41]  Kevin France,et al.  Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer deposition , 2016 .

[42]  Christopher Blair,et al.  Coefficient of thermal and moisture expansion and moisture absorption for dimensionally stable quasi-isotropic high-modulus graphite fiber/epoxy composites , 1990, Defense, Security, and Sensing.

[43]  J. Green,et al.  Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies. , 2006, Applied optics.

[44]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[45]  Manuel A. Quijada,et al.  Enhanced far-ultraviolet reflectance of MgF2 and LiF over-coated Al mirrors , 2014, Astronomical Telescopes and Instrumentation.

[46]  John E. Krist,et al.  Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances , 2015 .

[47]  Lester M. Cohen Effects of temporal dimensional instability on the Advanced X-ray Astrophysics Facility (AXAF-I) high-resolution mirror assembly (HRMA) , 1995, Optics & Photonics.

[48]  Charles B. Atkinson,et al.  Technology development for cryogenic deployable telescope structures and mechanisms , 2003, SPIE Optics + Photonics.

[49]  John C. Mankins,et al.  Technology Readiness Levels-A White Paper , 1995 .