Recursions for the trapdoor channel and an upper bound on its capacity

The problem of maximizing the n-letter mutual information of the trapdoor channel is considered. It is shown that 1/2 log2 (5/2) ≈ 0.6610 bits per use is an upper bound on the capacity of the trapdoor channel. This upper bound, which is the tightest upper bound known, proves that feedback increases the capacity.

[1]  Rudolf Ahlswede,et al.  Optimal coding strategies for certain permuting channels , 1987, IEEE Trans. Inf. Theory.

[2]  Haim H. Permuter,et al.  Capacity of the Trapdoor Channel With Feedback , 2006, IEEE Transactions on Information Theory.

[3]  Tobias Lutz,et al.  Various Views on the Trapdoor Channel and an Upper Bound on its Capacity , 2014, ArXiv.

[4]  L. Goddard Information Theory , 1962, Nature.

[5]  K. Kobayashi,et al.  An input/output recursion for the trapdoor channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  W. L. Root,et al.  Modern mathematics for the engineer , 1964 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[9]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .